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A modification of the iterative matrix diagonalization method of Davidson is pre-
sented that is applicable to the symmetric eigenvalue problem. This method is based
on subspace projections of a sequence of one or more approximate matrices. The
purpose of these approximate matrices is to improve the efficiency of the solution of
the desired eigenpairs by reducing the number of matrix–vector products that must
be computed with the exact matrix. Several applications are presented. These are
chosen to show the range of applicability of the method, the convergence behavior
for a wide range of matrix types, and also the wide range of approaches that may be
employed to generate approximate matrices.c© 2001 Academic Press
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1. INTRODUCTION

The symmetric eigenvalue problem

(H − λ j )v j = 0 (1.1)

is familiar in many application areas [1]. In some of these, the computation of the entire spec-
trum of eigenvalues and associated eigenvectors is necessary, and in others, only selected
eigenpairs are desired. In the former case, particularly with dense unstructured matrices,
the overall computational effort scales asO(N3) whereN is the dimension of the matrix;
these are calleddirect or densemethods. When only a few vectors are required, they may
sometimes be determined usingiterativemethods, and the overall effort may be much less,
particularly if some structure of the matrix (e.g., banded, blocked, sparse, outer-product,
tensor-product, and so forth) may be exploited. The largest eigenvalue problems correspond
to N as large as 108 or 109; for these situations, dense methods cannot even be considered,
and iterative methods are the only practical choice.
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The method that will be described in this work is a modification of the Davidson iterative
method [2–6]. The Davidson method has the following features, all of which are shared by
the method described in this work.

1. Only matrix–vector products (or linear transformations) of the matrix with arbitrary
trial vectors are needed. For structured or sparse matrices, this allows the products to
be computed efficiently, with less computational effort, fewer floating point operations,
and/or less I/O than the usual matrix–vector product. The matrix is not modified during
the procedure, so sparse fill-in does not occur. Furthermore, it is not necessary to actually
compute and store the matrix elements explicitly. There are many examples of applications
for which it is more efficient to either recompute the elements “on-the-fly” as needed (either
from formal expressions for the individual matrix elements or from underlying simpler,
compact, data structures) or for which the matrix structure itself may be exploited in some
way in order to compute the matrix–vector products in “operator” form. A few examples
of this are discussed in detail below.

2. The Davidson method is asubspacemethod. As a trial vector is added to the sub-
space during the iterative procedure, the new computed approximate eigenvalues from this
subspace (called theRitzvalues) bracket those of the previous iteration. This is particularly
beneficial when computing the lowest roots because the intermediate computed eigenvalues
are always upper bounds to the final converged lowest eigenvalues. Similarly, the highest
roots of an intermediate subspace representation are lower bounds to the final converged
highest eigenvalues.

3. The Davidson method can be used to find the lowest eigenpair, several of the lowest
eigenpairs, the highest eigenpair, several of the highest eigenpairs, or selected interior
eigenpairs.

4. A benefit of a subspace method is that convergence is generally more robust than for
a single-vector (or update) method. In general, given any single-vector iterative method,
a corresponding subspace method may be devised, and this subspace method will always
converge better than the original single-vector method. In fact, the subspace method may
sometimes converge rapidly even when the single-vector method upon which it is based
oscillates, diverges, exhibits false convergence, or otherwise converges problematically.
However, the subspace method typically requires more resources (memory, disk space, and
so forth) than the corresponding single-vector method, and the manipulation of the multiple
vectors is computationally more demanding than for the single-vector method. (These com-
ments regarding convergence may not apply necessarily tosequential relaxation[7], also
calledcontinuous update, single-vector methods. Each iteration of such a method consists
of N individual updates, usually applied in sequential order to the elements of the trial eigen-
vector. A subspace analog of these types of single-vector methods is impractical because
the subspace dimension would grow too large. Although these methods can converge effi-
ciently, particularly for isolated eigenpairs, the sequential update process requires ordered
access to the matrix elements, and this limits the range of applicability of these methods.)

5. It is possible for the Davidson method to converge to the wrong root, or, when several
roots are requested, to “skip” over roots and converge to nearby roots instead. This places
some importance on the choice of initial vectors.

One disadvantage of the Davidson method is that it can be slowly convergent for some
matrices. These include matrices that are not diagonally dominant. Slower convergence
means that more matrix–vector products are required, resulting in greater computational
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effort. This is particularly problematic for matrices of very large dimension for which each
matrix–vector product requires a major computational effort. It is primarily this situation
that is addressed by the method described in this work.

2. THE SPAM METHOD

The original Davidson Method is outlined in Fig. 1. During the iterative procedure, a set
of expansion vectors{x j ; j = 1, n} is available. These vectors may be collected together to
form the columns of a matrixX[n] , where the superscript denotes the number of vectors.
The details of the methods used to generate the new expansion vectors are discussed in
Appendix B. There are also the corresponding matrix–vector productsW[n] = HX [n] that
are stored. The representation ofH within this subspace is given by

〈H〉[n] =X[n]TH X [n] =W[n]TX[n], (2.1)

in which the superscriptT denotes the transpose. A projection matrix may be defined as

P[n] =X[n]
(
X[n]TX[n]

)−1
X[n]T . (2.2)

The method described here may be implemented in terms of general nonorthogonal ex-
pansion vectors. However, for simplicity, it will be assumed hereafter that the expansion
vectors are chosen to satisfy the relation(X[n]TX[n])= 1. This allows the projection matrix
to be written simply asP[n] =X[n]X[n]T . There is also the orthogonal projector defined as
Q[n] = (1− P[n]). These projectors result in the identity

H = (P[n] +Q[n]
)
H
(
P[n] +Q[n]

)
(2.3)

= P[n]H P[n] +P[n]H Q[n] +Q[n]H P[n] +Q[n]H Q[n] (2.4)

= (X[n]〈H〉[n]X[n]T +X[n]W[n]TQ[n] +Q[n]W[n]X[n]T
)+Q[n]HQ[n] . (2.5)

FIG. 1. Outline of the Davidson method.
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An arbitrary matrix–vector productHy may therefore be computed as four separate
contributions, the first three of which involve only operations with the subspace vectors
X andW.

The crucial idea of the method described here is that an approximate matrixH(1) is
available, that matrix–vector productsH(1)y require less effort to compute than the exact
productsHy, and that these approximate matrix–vector products are used to reduce the
overall computational effort. This reduced effort could be becauseH(1) is less dense than
H, or becauseH(1) is generated from some formal or algebraic approximation toH (e.g.,
simpler basis, a smaller basis, a lower-order approximation, an outer-product approxima-
tion, a tensor-product approximation, a coarser computational grid, and so on). With this
approximate matrix available, a subspace projected approximate matrix (SPAM)H̄[n] is
defined:

H̄[n] ≡ P[n]H P[n] +P[n]H Q[n] +Q[n]H P[n] +Q[n]H(1)Q[n] (2.6)

= (X[n]〈H〉[n]X[n]T +X[n]W[n]TQ[n] +Q[n]W[n]X[n]T
)+Q[n]H(1)Q[n] . (2.7)

Note that the first three terms in Eqs. (2.6) and (2.7) are “exact” when compared to Eqs. (2.4)
and (2.5). It is only the last term that is affected by the approximation. For a given subspace
of dimension [n], the eigenpair from this approximate matrix is computed(

H̄[n] − λ[n]
j

)
v[n]

j = 0. (2.8)

This eigenvector is then appended to the subspace (after orthonormalization) to formX[n+1].
An exact matrix–vector product is computed to formW[n+1]. This expanded subspace then
defines a new projectorP[n+1] and a corresponding new approximate matrixH̄[n+1], and the
process is repeated until convergence is achieved. Although the underlying approximate
matrixH(1) remains the same during this process, the SPAMH̄[n] changes as the iterations
proceed. Both the eigenvector and the eigenvalue from Eq. (2.8) are approximations to the
converged results. The accuracy of the approximation is quantified in Appendix A. However,
the approximate eigenvalue does not enjoy the upper (or lower, as relevant) bound property
that holds for the subspace eigenvalue computed from the exact matrix–vector products
only.

When a vectory is a member of{x j ; j = 1, n}, or if it is a general linear combination of
these vectors,y=X[n]c, then Eq. (2.6) results in the relation

H̄[n]y=Hy; wheny ∈ Span
(
X[n]

)
. (2.9)

It is only vectorsy orthogonal toX[n] , or that contain orthogonal components, that are
approximated bȳH[n]y relative to the exact matrix–vector productHy. As the procedure
converges to the eigenpair of interest, the subspaceX[n] contains the eigenvector. When this
occurs, the converged eigenpair ofH̄[n] is also an eigenpair of the exactH.

This leads to the question of how to solve the eigenvector equation of Eq. (2.8). It is
the same dimension as the original equation, so it is appropriate that an iterative method
should be used. In the current work, the iterative Davidson method outlined in Fig. 1 is used.
Equation (2.9) suggests that an initial subspace consisting ofX[n] could be used for this
iterative solution. Because the exact matrix–vector productsW[n] are already available, the
first n× n subblock of the subspace matrix〈H̄[n]〉1:n,1:n has already been computed and is
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available. Furthermore, all of the new expansion vectors that are added during the iterative
eigensolution can be chosen to be orthogonal toX[n] . In this case, a matrix–vector product
takes the simple form

H̄[n]x⊥ = X[n]W[n]Tx⊥ +Q[n]H(1)x⊥ (2.10)

= w(1)+X[n]
(
W[n]Tx⊥ − X[n]Tw(1)

)
, (2.11)

wherew(1)=H(1)x⊥ is the inexpensive matrix–vector product. Furthermore, as a result
of Eq. (2.9), a subspace matrix element between a vectory within X[n] and a vectorx⊥
orthogonal toX[n] is exact:

xT
⊥H̄[n]y= yT H̄[n]x⊥ = xT

⊥Hy; y ∈ Span
(
X[n]

)
, X[n]Tx⊥ = 0. (2.12)

It is only matrix elements in the diagonal subblock of〈H̄[n]〉 between two vectors in the
orthogonal space that are not exact relative to the matrix〈H〉 in the same vector subspace.

This suggests the SPAM implementation in Fig. 2. This is basically the same as the
original Davidson method, except that a flag,wtype, is toggled between 0 and 1 to denote

FIG. 2. Outline of the SPAM method.
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the type of matrix–vector product for each expansion vector. Furthermore, the convergence
criteria are slightly more complicated. Basically, there are two kinds of convergence. When
convergence is achieved withwtypen= 0, then all of the matrix–vector products have been
computed with the exact matrixH, and the desired eigenpair has been found. When con-
vergence is achieved withwtypen= 1, this means that the current SPAM eigensolution of
Eq. (2.8) has been found. At this time, the new expansion vectors (then1 vectors corre-
sponding to thewtypek= 1 vectors) are contracted using the coefficientsc from the current
subspace eigenvector, this vector is saved in the [n0+ 1] position inX, andwtypeis then
set to 0 for that vector to ensure that the next matrix–vector product will be computed
exactly.

One way to view the overall SPAM iterative procedure is to monitor the subspace dimen-
sion and to note the number of exact (withwtypek= 0) products computed and the number
of approximate (withwtypek= 1) vectors. In the following discussion, such a mixed sub-
space will be denoted [n0, n1]. As outlined above, the number of exact productsn0 in the
subspace never decreases during the iterative procedure, but the number of approximate
productsn1 is an irregular sawtooth function during the iterative procedure. The number of
approximate products increases for a few iterations, then upon intermediate convergence of
Eq. (2.8), the countn1 is reset to zero, and it then begins to increase again from that point.
Examples of this convergence behavior are given below.

3. THE MULTILEVEL SPAM METHOD

During the SPAM iterative method, the iterative solution to the eigenvector equation
(Eq. (2.8)) is required. Matrix–vector products with the approximate matrixH(1) are as-
sumed to require less effort than the exact products involvingH ≡ H(0). However, what if
convergence of Eq. (2.8) (for a given projection rank [n0]) is slow and there are many of
theseH(1) matrix–vector products required, the total cost of which is excessive? The answer
to this problem is to temporarily treat the matrix̄H[n0] as “exact,” and to apply the SPAM
method to this problem with yet another “approximate” matrixH(2):

H̄[n0,n1] = P[n0,n1]H̄[n0]P[n0,n1] +P[n0,n1]H̄[n0]Q[n0,n1]

+Q[n0,n1]H̄[n0]P[n0,n1] +Q[n0,n1]H(2)Q[n0,n1] . (3.1)

In order to reduce the computational effort, matrix–vector products withH(2) must require
even less effort than those ofH(1). The eigenvector solution from the equation

(
H̄[n0,n1] − λ[n0,n1]

j

)
v[n0,n1]

j = 0 (3.2)

is converged using the Davidson procedure. At this point, the vector space is denoted
[n0, n1, n2], which means that there aren0 vectors for which exact matrix–vector products
with H(0) are available,n1 vectors for whichH̄[n0] matrix–vector products using the ap-
proximate matrixH(1) have been computed, andn2 vectors for whichH̄[n0,n1] matrix–vector
products using the approximate matrixH(2) have been computed and are available. Upon
convergence of Eq. (3.2) the [n0, n1, n2] subspace is contracted in order to define a new
[n0, n1+ 1, 0] subspace, and the process is continued until convergence is achieved. When
convergence is achieved eventually for the sequence of level-1 SPAM approximations, the
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current [n0, n1]≡ [n0, n1, 0] space is contracted down to form a [n0+ 1]≡ [n0+ 1, 0, 0]
space, as described in Section 2. Analogous to Eqs. (2.9) and (2.11), matrix–vector products
satisfy

H̄[n0,n1]y= H̄[n0]y; wheny ∈ Span
(
X[n0,n1]

)
(3.3)

H̄[n0,n1]x⊥ =w(2)+X[n0,n1]
(
W[n0,n1]Tx⊥ − X[n0,n1]Tw(2)

); whenX[n0,n1]Tx⊥ = 0. (3.4)

These equations suggest a generalization of the SPAM method to an arbitrary number
of approximation levels based on a modification of the subspace procedure described in
the previous section. The SPAM at a given approximation level, labeled by(m+ 1) and
dependent on the current expansion vector subspace [n0, n1 . . .nm], is defined in terms of
the previousm-level SPAM along with a new approximate matrixH(m+1):

H̄[n0,n1,...nm] = P[n0,n1,...nm]H̄[n0,n1,...nm−1]P[n0,n1,...nm] + P[n0,n1,...nm]H̄[n0,n1,...nm−1]Q[n0,n1,...nm]

+Q[n0,n1,...nm]H̄[n0,n1,...nm−1]P[n0,n1,...nm] +Q[n0,n1,...nm]H(m+1)Q[n0,n1,...nm]

(3.5)

This procedure is outlined in Fig. 3. In this multilevel SPAM method, thewtypek variable

FIG. 3. Outline of the multiLevel SPAM method.
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is set to the approximation level of the corresponding matrix–vector product: 0 for exact
matrix–vector products, 1 for the first level of approximation, 2 for the second level of
approximation, and so forth. When the maximum SPAM level is set to 0, then the multilevel
SPAM method outlined in Fig. 3 is equivalent to the simple Davidson method outlined in
Fig. 1. When the maximum SPAM level is set to 1, then the multilevel SPAM method in
Fig. 3 is equivalent to the method outlined in Fig. 2.

This general idea is entirely consistent with the usual approach taken in various appli-
cations involving eigenvalue problems. The “exact” problem is too difficult to solve, so it
is approximated, in some way, by a model problem that is formally, conceptually, or com-
putationally simpler. If this simpler problem is itself too difficult to solve, then yet further
approximations are invoked. The SPAM method allows this series of approximations to be
incorporated directly into the numerical solution of the original “exact” eigenproblem.

4. DISCUSSION

The single-level and the general multilevel SPAM methods described above have been
implemented in a standard Fortran 90 subroutine. In this section, the features of this imple-
mentation are discussed. Several types of test matrices are used in these discussions, and
several different ways of formulating approximate matrices are demonstrated. Additional
details of the implementation are discussed in the context of these examples.

Banded Matrix Examples: The first examples are based on a banded matrix of the
general form

Hk,k= k; for k= 1 . . . N

Hk,l =1|k−l |; for |k− l | ≤ W andk 6= l

Hk,l = 0; otherwise.

(4.1)

These matrices are characterized by three scalar parameters, the matrix dimensionN, the
bandwidthW, and1, which determines the diagonal dominance of the matrix. In the
following test calculations, a matrix with a large bandwidth will be approximated by a
matrix with a smaller bandwidth. By using recursion, matrix–vector products with this
matrix may be computed withO(N) floating point operations, independent ofW. The
SPAM method is not the best approach for this matrix because the exact matrix–vector
products are just as expensive to compute as the approximate ones, but this is an excellent
matrix to use as a model for general matrices that display similar convergence characteristics
because the degree of diagonal dominance and the accuracy of the successive approximate
matrices is easily controlled.

The first column of results in Table I shows the convergence of the regular Davidson
iterative method, with a diagonal–preconditioned residual (DPR) expansion vector, for the
lowest eigenpair of a matrix characterized byN= 10,000,W= 64, and1= 0.75. The
initial vector ise1, the first column of a unit matrix of dimensionN. The dimension is
chosen so that this problem is nontrivial, yet the structure of the matrix results in model test
problems that are readily solved. The convergence criterion for this test case is|r | < 10−8

(see Appendix A), which is a typical convergence requirement. For this matrix, the lowest
eigenvalue,λ1= 0.585510562346823, is converged to approximately machine precision
(∼10−15)with this convergence tolerance, which is consistent with the bound in Eq. (A14).
Twelve iterations, each of which require anH(0) matrix–vector product, are required to
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TABLE I

Comparison of DPR and SPAM Convergence

SPAM SPAM
DPR Fixed Tolerance Dynamic Tolerance

Iteration [n0] |r | [n0, n1] |r | [n0, n1] |r |

1 [1] 1.13E+00 [0, 1] 1.13E+00 [0, 1] 1.13E+00
2 [2] 3.23E-01 [0, 2] 3.23E-01 [0, 2] 3.23E-01
3 [3] 1.05E-01 [0, 3] 1.05E-01 [0, 3] 1.05E-01
4 [4] 2.73E-02 [0, 4] 2.73E-02 [0, 4] 2.73E-02
5 [5] 5.41E-03 [0, 5] 5.41E-03 [0, 5] 5.41E-03
6 [6] 8.66E-04 [0, 6] 8.66E-04 [0, 6] 8.66E-04
7 [7] 1.16E-04 [0, 7] 1.16E-04 [0, 7] 1.16E-04
8 [8] 1.35E-05 [0, 8] 1.35E-05 [1, 0] 1.40E-04
9 [9] 1.37E-06 [0, 9] 1.37E-06 [1, 1] 2.11E-05

10 [10] 1.24E-07 [0, 10] 1.24E-07 [1, 2] 2.78E-06
11 [11] 1.02E-08 [0, 11] 1.02E-08 [1, 3] 3.47E-07
12 [12] 7.59E-10 [0, 12] 7.59E-10 [1, 4] 7.97E-08
13 [1, 0] 7.12E-05 [1, 5] 2.13E-08
14 [1, 1] 4.34E-06 [1, 6] 7.30E-09
15 [1, 2] 2.06E-07 [2, 0] 7.35E-09
16 [1, 3] 1.69E-08
17 [1, 4] 6.30E-09
18 [2, 0] 6.28E-09

Nproduct [12] [2, 16] [2, 13]

Note. Convergence trajectories of the lowest root of the banded test matrix withN= 10,000, W0= 64,
and1= 0.75. For the SPAM calculations,W1= 32. The convergence criterion is|r | < 10−8.

achieve convergence with the traditional Davidson DPR method. This convergence rate is
typical of many eigenproblems that occur in various applications. The largest off-diagonal
element in this matrix is 0.75, and the smallest nonzero off-diagonal element is 1.01· 10−8.

An approximate matrixH(1) with half the bandwidth ofH(0) is characterized byN=
10,000,W= 32, and1= 0.75, and a single-level SPAM is applied. As seen in Table I,
only twoH(0) matrix–vector products are required along with 16 approximateH(1) matrix–
vector products. The total number of iterations has increased, but almost all of them are
with the approximate matrixH(1) rather than the exact matrixH(0). The smallest nonzero
off-diagonal element inH(1) is 1.00· 10−4. The largest element in the difference matrix
(H(1) − H(0)) has the magnitude 7.5 · 10−5. If the H(1) products were 10 times cheaper to
compute than theH(0) products (an effort ratio of 1/10) for an actual application with similar
convergence properties, then already the SPAM method would have resulted in an overall
savings of 12 : (2+ 1.6), or an overall 70% reduction of effort.

Inspection of the convergence trajectory of the SPAM calculation in Table I suggests
that too many level-1 iterations are performed during the generation of the [1, 0] subspace.
Basically, no matter how well the [0, n1] iterations are converged, the residual of the [1, 0]
iteration (immediately after contraction of then1 vectors) will have a vector norm of at least
∼1 · 10−4. This suggests that instead of the final residual norm convergence tolerance, a
dynamic adjustment of the intermediate residual norms would result in improved efficiency.
The accuracy of residual norms is quantified in Appendix A. Equation (A22) suggests that
the convergence of thēH[0] matrix during this first SPAM iteration needs to be converged
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to at least‖H(1) − H(0)‖. Two estimates of this matrix norm were considered, one based on
the Gerschgorin disk bound [8], and the other based on the eigenvalue bound in Eq. (A13)
along with a coordinate unit vector. The expression in Eq. (A13) was found empirically both
to be smaller in magnitude and to result in the more accurate residual norm estimate, with
a value of 1.61· 10−4 for this particular matrix. Because this estimate is based on a bound,
and is not necessarily an accurate estimate of either the matrix difference norm or of the
residual vector of the [1,0] iteration, an additional scale factor ofα= 0.95 is used, and the
first SPAM iteration is converged to|r | < 1.54· 10−4. This may be regarded as a prediction,
before contraction, of the actual [1, 0] residual norm after contraction. If this scale factor
α is chosen to be too small, then a few extra approximateH(1) matrix–vector products
may be computed. However, if the scale factor is too generous, and the first sequence of
SPAM iterations is not sufficiently converged, then the penalty is that too many expensive
H(0) matrix–vector products may be computed. Because the penalty for overconverging
the approximate SPAM sequence is less than the penalty for underconverging the SPAM
sequence, it is better generally to err on the side of caution than to err on the side of optimism.
In the general case, ifn= n0+ n1 is the number of expansion vectors during an iteration, then

∣∣Sin
(
ψ [n0]

)∣∣= ∣∣c(n0+1):n

∣∣=√cT
(n0+1):nc(n0+1):n. (4.2)

This value involves only the expansion coefficients of the basis vectors in then1 sub-
space. The iterative solution of the SPAM eigenpair is terminated when the residual norm
satisfies ∣∣r [n0,n1]

∣∣ ≤ α∣∣Sin
(
ψ [n0]

)∣∣ · ∥∥H(1) − H(0)
∥∥. (4.3)

Comparing the residual norms for the [0, 7] and the [1, 0] iterations in Table I, it is seen that a
choice ofα= 0.95, along with the above estimate of‖H(1) − H(0)‖, is sufficiently accurate
for this particular matrix. The final result of adjusting the convergence dynamically during
the SPAM iterative process according to Eq. (4.3) for this test case is that two exact matrix–
vector products are required and 13 approximateH(1) matrix–vector products are required
to achieve convergence. That is, three approximate matrix–vector products were skipped
compared to the previous fixed-tolerance convergence trajectory. For a matrix–vector prod-
uct effort ratio of 1/10, the overall effort, compared to the reference DPR expansion vector
procedure, would be 12 : (2+ 1.3), or an overall 73% reduction in effort.

The convergence characteristics for several SPAM calculations are shown in Table II.
Each row corresponds to a different choice of approximate matrixH(1). For each approx-
imateH(1), the matrix difference norm‖H(1) − H(0)‖ is estimated from Eq. (A13), and
this estimate is used to dynamically adjust the intermediate convergence tolerances as de-
scribed above. In all cases, a choice ofα= 0.95 was used. For each convergence trajectory,
the maximum subspace dimensionnmax that is required to achieve convergence is listed,
along with the total number of matrix–vector products for each of the two matrices,H(0)

andH(1). Two separate final convergence tolerances are imposed on the computed residual
norms, a looser value of 10−5 and a tighter value of 10−8. These span the range of “typical”
convergence criteria for various applications. Both the maximum subspace dimension and
the total number of products can be important in determining the overall efficiency of a cal-
culation, and even whether the calculation fits within the memory or disk space limitations.
A more detailed effort model is discussed below. Comparing the two sets of calculations for
the two residual norm tolerances shows that smaller values ofnmax and fewer matrix–vector
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TABLE II

Comparison of SPAM convergence

|r | < 10−5 |r | < 10−8

[W] ‖H(1) − H(0)‖ nmax Nproduct nmax Nproduct

[64, 64] 0.0 9 [1, 9] 12 [1, 12]
[64, 56] 1.608· 10−7 9 [1, 9] 10 [2, 12]
[64, 48] 1.614· 10−6 9 [1, 9] 9 [2, 12]
[64, 40] 1.612· 10−5 8 [2, 9] 8 [2, 12]
[64, 32] 1.611· 10−4 7 [2, 9] 8 [2, 12]
[64, 24] 1.609· 10−3 6 [2, 9] 7 [3, 15]
[64, 16] 1.602· 10−2 6 [3, 11] 7 [4, 16]
[64, 8] 1.605· 10−1 6 [4, 12] 7 [6, 17]
[64, 1] 1.203· 100 9 [9, 9] 12 [12, 12]
[64, 0] 1.604· 100 9 [9, 9] 12 [12, 12]

Note. Convergence of the lowest root of the banded test matrix withN= 10,000 and
1= 0.75. The‖H(1) − H(0)‖ values are estimated from the residual norm bound. The inter-
mediate convergence tolerance is adjusted dynamically.

products are required for the looser convergence criteria. This is consistent with the con-
vergence of the usual Davidson DPR method. The other general trend is that the better the
H(1) approximation, the fewer exactH(0) products are required. In particular, theW1= 64,
W1= 56 andW1= 48 calculations demonstrate that convergence can be achieved with a
single exact matrix–vector product in the most favorable situations. Convergence is always
achieved with a single “exact” matrix–vector product withW0=W1, and this is demon-
strated in the first row in Table II; this has no practical consequence, but it demonstrates
that the implementation satisfies this formal boundary condition in the limitH(1)→ H(0).

The last two rows of Table II, withW1= 1 and withW1= 0 should also be mentioned.
TheW1= 1 row uses a tridiagonalH(1) matrix. For this test case, because of the dynamical
adjustment of the intermediate convergence, each DPR expansion vector generated for
H̄[n0] is “contracted” immediately and used to form an exactH(0) matrix–vector product.
The result is that there is an equal number ofH(0) andH(1) products for both convergence
tolerances, and theH(0) convergence trajectory is identical to the DPR trajectory. The last
row, with W1= 0, employs a diagonalH(1). The convergence trajectory of this row is also
equivalent to the DPR trajectory. This is examined in more detail below. It is somewhat
disappointing that a tridiagonalH(1) does not perform significantly better than a diagonal
H(1); linear equation solutions with a tridiagonal matrix require only slightly more effort than
those with a diagonal matrix, and combined with the IIGD/GJD method (see Appendix B),
this would have been a good alternative way to generate improved expansion vectors with
minimal additional effort.

Table III shows the convergence trajectory for level-2 and level-3 SPAM convergence
with the sameW= 32H(1) matrix described above, along with aW= 16H(2) and aW= 8
H(3) matrix. The dynamical adjustment of the intermediate convergence tolerance used
previously is generalized to the multilevel case. After each subspace diagonalization, the
coefficient vector is decomposed into contributions from the variouswtypelevels. These
individual contributions are accumulated to define∣∣Sin

(
ψ [n0,n1...nk]

)∣∣= ∣∣c(n0+n1...+nk+1):n

∣∣ (4.4)
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TABLE III

MultiLevel SPAM Convergence

2-level SPAM 3-level SPAM
Dynamic Tolerance Dynamic Tolerance

Iteration [n0, n1, n2] |r | [n0, n1, n2, n3] |r |

1 [0, 0, 1] 1.13E+00 [0, 0, 0, 1] 1.13E+00
2 [0, 0, 2] 3.23E-01 [0, 0, 0, 2] 3.22E-01
3 [0, 0, 3] 1.05E-01 [0, 0, 0, 3] 1.08E-01
4 [0, 0, 4] 2.73E-02 [0, 0, 1, 0] 1.53E-01
5 [0, 0, 5] 5.41E-03 [0, 0, 1, 1] 4.00E-02
6 [0, 1, 0] 1.02E-02 [0, 0, 1, 2] 1.05E-02
7 [0, 1, 1] 1.63E-03 [0, 0, 2, 0] 1.05E-02
8 [0, 1, 2] 3.14E-04 [0, 1, 0, 0] 1.35E-02
9 [0, 1, 3] 1.05E-04 [0, 1, 0, 1] 6.15E-03

10 [0, 2, 0] 1.08E-04 [0, 1, 0, 2] 1.37E-03
11 [1, 0, 0] 1.27E-04 [0, 1, 0, 3] 4.17E-04
12 [1, 0, 1] 5.37E-05 [0, 1, 0, 4] 5.65E-05
13 [1, 0, 2] 1.52E-05 [0, 1, 1, 0] 3.25E-04
14 [1, 0, 3] 3.77E-06 [0, 1, 1, 1] 5.63E-05
15 [1, 0, 4] 5.32E-07 [0, 1, 2, 0] 5.63E-05
16 [1, 0, 5] 7.06E-08 [0, 2, 0, 0] 5.64E-05
17 [1, 1, 0] 2.74E-07 [1, 0, 0, 0] 8.87E-05
18 [1, 1, 1] 2.46E-08 [1, 0, 0, 1] 2.57E-05
19 [1, 1, 2] 4.43E-09 [1, 0, 0, 2] 6.78E-06
20 [1, 2, 0] 4.37E-09 [1, 0, 0, 3] 2.46E-06
21 [2, 0, 0] 5.47E-09 [1, 0, 0, 4] 5.15E-07
22 [1, 0, 1, 0] 1.55E-06
23 [1, 0, 1, 1] 2.56E-07
24 [1, 0, 1, 2] 9.90E-08
25 [1, 0, 2, 0] 9.72E-08
26 [1, 1, 0, 0] 1.16E-07
27 [1, 1, 0, 1] 4.43E-08
28 [1, 1, 0, 2] 1.35E-08
29 [1, 1, 0, 3] 3.89E-09
30 [1, 1, 1, 0] 4.98E-09
31 [1, 2, 0, 0] 5.02E-09
32 [2, 0, 0, 0] 5.29E-09

Nproduct [2, 4, 15] [2, 4, 7, 19]

Note. Convergence trajectories of the lowest root of the banded
test matrix withN= 10,000,W0= 64, and1= 0.75. For the SPAM
calculations,W1= 32, W2= 16, W3= 8. The convergence criterion is
|r | < 10−8.

for each approximation levelk. This factor, along with the estimates of the matrix difference
norms, provides a prediction for the residual norm after the next contraction at thek-th
level according to Eq. (A13). The current intermediate residual norm is compared to these
estimates according to∣∣r [n0,n1...]

∣∣ ≤ α ·Max
{∣∣Sin

(
ψ [n0,n1...nk]

)∣∣ · ∥∥H(k+1) − H(k)
∥∥ : k= 0 . . .wtypen

}
. (4.5)

TheMax in this comparison picks out the weakest link in the approximation sequence for
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the current set of expansion vectors. Just as in the single-level SPAM discussed above, it
does not improve efficiency to converge the intermediate results beyond this value because
a larger residual norm will be computed later after some subsequent contraction step. As
seen in Table III, this results in an acceptable convergence trajectory without any apparent
wasted effort. It should be mentioned that an incorrect estimate of the scale factorα or of
a matrix difference norm does not result in incorrect results, it simply results in too much
effort required to achieve the correct results. Furthermore, just as for the single-level case,
the penalty for choosing anα (or a matrix difference norm estimate) too large is greater
than that for choosing anα too small, so, in general, it is better to be too conservative than
too optimistic.

In all of the above examples, the traditional Davidson DPR vector has been used to define
the new expansion vectors. Before examining other SPAM convergence trajectories, various
choices for trial expansion vectors within the SPAM method will be compared. Olsenet al.
[26] have proposed the Inverse-Iteration Generalized Davidson (IIGD) method for generat-
ing expansion vectors within the Davidson subspace method. As discussed in Appendix B,
this is equivalent to the Generalized Jacobi–Davidson (GJD) method of Sleijpenet al.
[27, 28] when applied to the symmetric eigenvalue problem with unit metric matrix and
with the same (diagonal) approximate preconditioner. For essentially the same effort, and
using the same diagonal preconditioner, the IIGD/GJD method results in an improved ex-
pansion vector that sometimes converges better than the traditional Davidson DPR method.
Another choice of expansion vector is the residual vector itself. As discussed in Appendix B,
this results in the well-known Lanczos method.

The convergence of the Davidson method using these three expansion vector choices is
compared in Table IV for the sameW= 64 banded matrix described above and with the
same convergence tolerance. The convergence trajectory for the DPR expansion vector has
already been given in Table I. The convergence using the IIGD/GJD expansion vector is
essentially identical for this matrix. This is, in part, because the starting vector is the first col-
umn of the unit matrix; other starting vector choices would show larger iteration-by-iteration
differences. Both the DPR expansion vector and the IIGD/GJD expansion vector require 12
iterations to converge. The Lanczos expansion vector, by contrast, requires 68 iterations to

TABLE IV

Comparison of Various Expansion Vectors

Expansion vector
type [W] nmax Nproduct

DPR [64] 12 [12]
IIGD/GJD [64] 12 [12]
Lanczos [64] 68 [68]
SPAM+DPR [64, 0] 12 [11, 21]
SPAM+IIGD [64, 0] 12 [11, 21]
SPAM+Lanczos [64, 0] 28 [13, 131]
SPAM+DPR [64, 32, 0] 7 [2, 13, 20]
SPAM+IIGD [64, 32, 0] 7 [2, 13, 20]
SPAM+Lanczos [64, 32, 0] 77 [2, 14, 289]

Note. Convergence of the lowest root of the banded test matrix with
N= 10,000 and1= 0.75. The convergence criterion is|r | < 10−8.
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converge. As discussed in Appendix B, this is typical of convergence comparisons between
the preconditioned gradient expansion vectors, which selectively converge the eigenpair of
interest, and the underlying Krylov subspace that is used in the Lanczos method, which
does not converge selectively. Because there are no contractions or restarts in these calcula-
tions, the maximum subspace is the same as the number of products for these calculations.
Although the subspace diagonalization is still trivial for these cases, even for the slowly
convergent Lanczos case, the vector manipulations can become significant, particularly for
very large matrix dimensionsN.

For comparison purposes, rows 4–6 of Table IV show the convergence results for level-1
SPAM calculations in whichH(1) is chosen to be the same diagonal matrix as the precon-
ditioners used in the DPR and in the IIGD/GJD methods. The three rows correspond to the
three different choices for expansion vectors: DPR, IIGD/GJD, and Lanczos. The conver-
gence is identical, iteration by iteration, for the DPR and IIGD/GJD expansion vectors: 11
exactH(0) matrix–vector products are required and 28 diagonal matrix–vector products are
required to converge the highest-level SPAM eigenvalue problem. The fact that 11, rather
than 12 (as before),H(0) products achieves convergence for this problem is an insignificant
discretization artifact; as seen in Table I, the residual norm on the 11th DPR iteration is
just slightly larger than the convergence tolerance, and for these SPAM convergence cases,
it is just slightly below the tolerance on the 11th iteration. This demonstrates that there is
no significant advantage of the SPAM method over these other preconditioned expansion
vector procedures for this choice ofH(1). As discussed in Appendix B, it is expected that this
result will be general. This is because the formal advantages of SPAM are not significant
compared to the coarseness of the diagonalH(1) approximation. Furthermore, although
SPAM requires, in principle, several iterations to solve theH̄[n] eigenvalue equation, in
practice it is observed usually that a single DPR (or IIGD/GJD) iteration is sufficient to
achieve convergence with the dynamically adjusted tolerance. Forcing convergence beyond
this value does not improve significantly the overall efficiency. When only a single iteration
is performed to solve the SPAM equation, the expansion vector is exactly the same as that for
the DPR method (or whichever expansion vector method is used to generate expansion vec-
tors for the iterative solution of the highest SPAM level). This was demonstrated already in
Table II. The results in Table IV were generated by adjusting the estimate for‖H(1) − H(0)‖
in order to artificially prevent this from occurring for this particular comparison; two or
three iterations where required to solve for each SPAM eigenvector for the SPAM/DPR and
SPAM/IIGD expansion vectors.

Row 6 of Table IV shows the results for the Lanczos expansion vector. For this expansion
vector, 13 exactH(0) matrix–vector products are required and 131 diagonal matrix–vector
products are required to converge the highest-level SPAM eigenvalue problem with the same
adjusted estimate for‖H(1) − H(0)‖as before. This is an interesting result for several reasons.
First, it demonstrates the general principle that the SPAM method isolates the number of
exact matrix–vector products that are required to achieve convergence from the quality of
the individual expansion vectors. This is true for arbitraryH(1) approximations, the diagonal
approximation here is simply the most extreme example. Second, this example shows that the
number of high-level (i.e., more approximate) matrix–vector products generally increases
as new SPAM approximation levels are added. This is compensated by a reduced number
of low-level (i.e., more exact) products. Whether or not this is beneficial depends on the
relative costs of the products with the two different approximations and on the number of
products of each that are required. This is discussed in more detail below. Finally, another
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TABLE V

Total Effort Model for Various SPAM Levels

[W] Nproduct nmax µ= 1 µ= 3/4 µ= 1/2 µ= 1/4 µ= 1/10 µ= 1/100

[64] [12] 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
[64, 32] [2, 13] 7 1.2500 0.9792 0.7083 0.4375 0.2750 0.1775
[64, 32, 16] [2, 4, 15] 6 1.7500 1.1198 0.6458 0.3281 0.2125 0.1701
[64, 32, 16, 8] [2, 4, 7, 19] 5 2.6667 1.4128 0.6771 0.3112 0.2074 0.1701
[64, 32, 16, 8, 4] [2, 4, 7, 11, 22] 4 3.8333 1.7116 0.7083 0.3079 0.2069 0.1701
[64, 32, 16, 8, 4, 2] [2, 4, 7, 12, 15, 21] 4 5.0833 1.9775 0.7370 0.3087 0.2070 0.1701
[64, 32, 16, 8, 4, 2, 1] [2, 4, 7, 10, 15, 18, 23] 4 6.5833 2.1889 0.7383 0.3063 0.2068 0.1701

Note. Convergence of the lowest root of the banded test matrix withN= 10,000 and1= 0.75. The convergence
criterion is|r | < 10−8.

advantage of SPAM in this situation is that the maximum subspace dimension reached
during the entire process is onlyn= 28 compared to then= 68 with the straight Lanczos
method in row 3.

Rows 7–9 of Table IV show the results for a 2-level SPAM convergence with each of
the three choices for expansion vectors. The number of products required are 2, 13, and 20,
respectively, for the three matrices with bandwidths of 64, 32, and 0 for the DPR and for
the IIGD/GJD expansion vectors. The Lanczos expansion vector requires 2, 14, and 289
matrix–vector products, respectively, for the three matrices. The same general trend is seen
as for the previous Lanczos rows in Table IV. Namely, the slow convergence of the Lanczos
expansion vector is isolated to the highest approximation level. It is also worth noting that
the maximum subspace dimension has increased ton= 77, which is larger even than the
straight Lanczos convergence in row 3. Although this increase is somewhat artificial because
of the adjusted convergence tolerance, the increase is interesting even when compared in a
relative way to row 6, which has the same adjusted convergence tolerance.

Multilevel SPAM convergence is examined in Table V. The bandwidths of the various
approximation levels are shown in the first column, and the corresponding number of
matrix–vector products required to achieve convergence is shown in the second column.
The expansion vector in all cases is the DPR procedure, but the IIGD expansion produces
identical results. Except for small variations in the matrix–vector product counts resulting
from threshold discretization, it is generally observed that as new SPAM levels are added,
the counts for the previous levels remain constant. It is only the highest level that is changed
when a new level is added. The overall effort required to achieve convergence is given by
the sum of the total efforts required for each level. This can be modeled by assuming that
the ratio of the effort required,

µk=Effort
(
H(k)x

)/
Effort

(
H(k–1)x

)
, (4.6)

for each approximation level is the same for all levels. This will not be true in actual
applications, but it gives an idea of the general trend of overall efficiency as a function of
µ and of the number of approximation levels.

The first column of Table V corresponds toµ= 1, which means that all of the matrix–
vector products require the same effort. As expected, it is seen that the overall effort increases
with the number of SPAM levels. This is actually the situation for the banded test matrices



THE SPAM DIAGONALIZATION METHOD 487

used in this section—they all require the same effort regardless of the bandwidth, so
no efficiency is gained by approximating one matrix by another. The second column
corresponds toµ= 3/4. That is, each successive SPAM level requires 75% of the effort of
the previous one. In this case, it is seen that for the convergence rates for this model problem,
the minimum overall effort decreases for one SPAM level, and then begins to increase as
more approximation levels are added. The third column corresponds toµ= 1/2. For this
case, adding one SPAM level reduces the overall effort by about 30%, adding a second
level reduces the overall effort by an additional 5%, but adding more SPAM levels causes
the overall effort to increase. The next column corresponds toµ= 1/4. For this case, the
overall effort decreases down to about 31% with three approximate matrices, and remains
fairly constant after that. Forµ= 1/10, the overall effort minimizes with three SPAM levels
at 21%, and then remains roughly constant beyond that. The last column corresponds to
µ= 1/100, and the effort minimizes at 17% with two SPAM levels. The general conclusion
from this effort model is that there is some optimum SPAM level for each problem, and in-
creasing the SPAM level beyond that either increases the overall effort, or leaves the overall
effort approximately the same so that nothing further is gained. The optimal approximation
level at which that minimum effort occurs depends on the accuracy of the sequence of
matrix approximations and on the effort required for each matrix–vector product at each
approximation level.

It is also observed in Table V that the maximum subspace dimension tends to decrease as
the number of SPAM levels increases. This effect is not included into the simple effort model
described above, but for very large matrix dimensions, where either memory or external
storage is a limiting factor, this can be an important aspect of overall efficiency.

All of the above discussion has concerned convergence of the lowest eigenpair. Con-
vergence of several of the lowest eigenpairs is examined next. There are several ways to
converge excited states with the Davidson method. One approach is to converge the lowest
vector completely and then save that converged vector and the corresponding matrix–vector
product. Then a new trial vector is generated for the second root, and the procedure is
restarted with two initial trial vectors (x1, x2) and one product vector (w1). Because the
lowest vector satisfies its convergence criteria, all of the expansion vectors in this second
step will be directed toward convergence of the second eigenpair. Upon convergence, both
of the lowest two vectors and products are saved, a new trial vector is generated for the third
root, and the process is continued until all of the desired eigenpairs have been computed.
The lowest 10 eigenpairs of the banded test matrix described above are computed in this
“one at a time” approach, and the convergence summary is given in the first row of Table VI.
The residual norm for each vector is converged to|r j | < 10−8, the same as the previous
calculations. For this particular matrix, the convergence of each new vector requires 11 or
12 iterations, and convergence of all 10 roots requires 118 matrix–vector products total. The
maximum subspace dimension reaches its maximum value ofn= 21 on convergence of the
10th vector. At this time, nine converged vectors for the lower roots have been computed and
stored, and while iterating the last vector, twelve additional subspace vectors are required
to achieve convergence.

The above “one at a time” procedure for excited states is appropriate when it is not
known in advance how many vectors are needed. After each vector is converged, it may
be examined to determine if another vector needs to be computed. This characterization is,
of course, very problem-specific. If it is known ahead of time how many vectors will be
required, then another procedure may be employed. In this approach, all of the requested
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TABLE VI

Convergence Results for Multiple Eigenvectors

Method [W] nmax Nproduct

DPR
One vector at a time [64] 21 [118]
Simultaneous/lowest [64] 42 [42]
Simultaneous/cycle [64] 28 [28]
Simultaneous/largest|r j | [64] 28 [28]

SPAM
One vector at a time [64, 32] 17 [20, 138]
Simultaneous/lowest [64, 32] 42 [20, 62]
Simultaneous/cycle [64, 32] 36 [20, 50]
Simultaneous/largest|r j | [64, 32] 34 [20, 52]

Note. Convergence of the lowest 10 roots of the banded test matrix withN= 10,000 and1= 0.75. The conver-
gence criterion is|r j | < 10−8. The matrix-vector product counts are the totals for all 10 roots. The converged
computed eigenvalues are:λ1= 0.585510562346823,λ2= 1.723295074298214,λ3= 2.808750052512915,
λ4= 3.867329659136034,λ5= 4.908652636212611,λ6= 5.937892192171621,λ7= 6.958397150707880,
λ8= 7.972562750803514,λ9= 8.982177511445222,λ10= 9.988585488303615.

vectors are converged simultaneously, from the same set of expansion vectors. One or more
initial vectors are generated, and at each step, one or more unconverged vectors are chosen
to define one or more new expansion vectors. If the effort involved in the computation of
a matrix–vector product is dominated by processing of the matrix itself (e.g., generation
of the matrix elements, indexing of the elements in a sparse data structure, or performing
the associated I/O on the matrix elements), then it is beneficial to compute simultaneously
several new trial vectors. This is because the cost of the matrix processing is amortized
over several vector products. This is the basis of the blocked version of the Davidson
method proposed by Liu [4, 9]. However, if the effort is dominated by the multiplications
with the vector elements, then it is more efficient to add a single new vector at a time
to the subspace. This latter situation is assumed in the SPAM implementation described
in this section. There are three ways that this addition of a single expansion vector is
done.

The first way is to select the lowest unconverged vector, and use the corresponding Ritz
value and residual vector to define the new expansion vector. Once this vector is added to the
space, it may benefit not only the selected eigenpair, but also all of the other eigenpairs. In
this way, the total effort required for convergence of several eigenpairs is reduced compared
to the “one at a time” approach. The total matrix–vector product count for this method is
given in the second row of Table VI. The total number of products is reduced to 42, which
is a significant reduction compared to the “one at a time” approach. On average, the number
of matrix–vector products has been reduced from 11.8/eigenpair down to only 4.2/eigen-
pair. However, it is also seen that the maximum subspace dimension has increased from
n= 21 ton= 42, so, compared to the “one at a time” approach, there is a tradeoff between
reducing the number of expansion vectors and increasing the maximum subspace dimen-
sion.

A second way that individual expansion vectors may be selected is to cycle among the
unconverged vectors. It is perhaps not obvious why this should result in an improvement,
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but experience shows that this is the case for some problems. The qualitative reason for this
is that the final expansion vectors computed for a particular almost-converged eigenvector
are rather selective for that particular vector and do not benefit the other vectors within
the expansion space. In contrast, the vectors that are added early for the poorly converged
eigenvectors tend to benefit other nearby poorly converged eigenpairs. By cycling over the
roots early, rather than picking one and iterating it to convergence, all the vectors within the
space are benefited. The results of this approach are given in the third row of Table VI. It is
seen that the total number of products is reduced to 28 vectors, which is, on average, less than
three matrix–vector products per converged eigenpair. This improved overall convergence
also reduces the maximum subspace dimension down ton= 28. This is not as good as the
“one at a time” value, but it is better than the second row results.

A third way that individual expansion vectors may be selected is to improve the uncon-
verged vector that has the largest residual norm. The advantage of this approach is that the
intermediate Ritz values tend to maintain to the extent possible the same order throughout
the convergence process. The convergence results for this method are given in the fourth row
of Table VI. For this test case, the convergence is comparable to that for the cycling option.

These same four general approaches to convergence of multiple eigenpairs in the tradi-
tional Davidson method also apply to the SPAM method. The matrix–vector product counts
are reported in rows 5–8 of Table VI. In all four cases, the SPAM procedure requires only
20 exactH(0) matrix–vector products to converge all 10 eigenpairs. The number of approx-
imateH(1) products required shows the same trend as discussed above for the traditional
Davidson method. Namely, the “one at a time” approach is least efficient and requires
138 H(1) products, the “lowest unconverged vector” approach is significantly better with
62H(1) products, the “cycle among the unconverged vectors” approach is best and requires
only 50H(1) products, and the “largest residual” approach is almost as good with 52H(1)

products. In all cases, the average number of exact products required is reduced to only two
per converged eigenpair, which is significantly better than even the best performance that is
achieved with the traditional Davidson/DPR procedure. Furthermore, if theH(1) products
are very much cheaper than theH(0) products, then the use of the SPAM method allows
the practical use of the “one at a time” approach to convergence in those cases where the
number of converged eigenpairs is unknown at the beginning, and each converged vector
must be examined. The maximum subspace dimensions for these four SPAM cases follow
the same trend as for the analogous four DPR cases. Namely, the “one at a time” approach
has the smallest subspace requirements, whereas the simultaneous convergence options,
cycling among the unconverged vectors, choosing the largest residual, and iterating on the
lowest unconverged vector, result in larger subspace requirements.

The previous discussion has assumed that the lowest eigenpairs within the spectrum are
desired. All of these vector choices apply also to the convergence of the highest eigenpairs
within the spectrum. An example of this is given below.

In the above simultaneous convergence examples, all the requested vectors are converged
relative to their own dynamical convergence tolerances at each SPAM level before contrac-
tion of the vectors to the next lower (more accurate) SPAM level occurs. This contraction
involves the projection operatorQ[n] , followed by orthonormalization of all the vectors, and
this projection may introduce linear dependencies in the set of contracted vectors. Early
during the iterations at some level, none of the vectors are converged, so a new expansion
vector is computed for each requested eigenpair. However, not all of the vectors converge on
the same iteration; some will converge before others and new expansion vectors are added
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only for unconverged eigen pairs. Consequently, there are several situations that can occur
during contraction of the vectors: (1) There are more vectors than roots, and each root has
at least one expansion vector computed for it. In this case the projected vectors will be lin-
early independent. (2) There are more new expansion vectors than roots sought, but some
roots do not have expansion vectors because they are already converged at that level. The
projected vectors may be linearly dependent in this case. (3) There are fewer new expansion
vectors than roots. There may be linear dependencies in the projected vectors in this case.
In the SPAM implementation described here, all three of these situations are treated with
singular value decomposition (SVD). The subblock of the coefficient matrix is decomposed
according to

c(nm+1):n,1:nr =UσVT , (4.7)

wherenr is the number of requested roots (or the current subspace dimension as appropriate);
nm is the number of expansion vectors up through themth SPAM level (i.e., the onesnot
being contracted);U andV are orthogonal square matrices; andσ is the “diagonal” matrix
of singular values. In general, the subblock ofc is rectangular, not square, andσ has the
same dimensions as the subblock ofc. All three of the above situations may be treated
by examining the ratio of the singular valuesσ j /σ1. When this ratio becomes too small,
less than about 0.1 in most situations, then the corresponding vector inU may be safely
ignored without affecting convergence. In case (1) above, there will benr singular value
ratios that are very close to 1.0. In case (2) above, there will be one or more singular
values close to 1.0, and the remaining singular values will be small (usually 0.001 or
smaller). In case (3), there will be one or more ratios close to 1.0, but there may be also
small singular values that must be deleted. Once the number of “large” singular values are
identified, the corresponding columns ofU define the appropriate contraction coefficients
and the expansion vectors are contracted accordingly. In the special case of a single root,
this procedure is always equivalent to the contraction described in Figs. 2 and 3. It is
only for simultaneous convergence of several states that the SVD procedure is used to
recognize linear dependencies. There are several features of this SVD transformation that are
important. Because the columns ofU are orthonormal, and the underlying expansion space
is already orthonormal, the vectors may be contracted without further orthonormalization.
Also, all of the above SVD operations occur just within the subspace; manipulations within
the large vector spaceX[n] are therefore simplified or eliminated entirely. The matrixV is
not used in this procedure, so it need not be computed or stored. In situations for which
loose convergence criteria are specified for some eigenpairs, and tight convergence criteria
are specified for others, it is convenient to weight correspondingly the columns ofc prior
to the SVD procedure.

There are two other forms of excited state convergence that are implemented within the
SPAM procedure discussed in this section. In some situations, a single interior eigenpair is
desired of some unknown indexj within the entire spectrum (1. . . N), but a good estimate
of the final converged eigenvalue is known. After the Ritz values within the subspace are
determined, the vector associated with the approximate eigenvalue closest to this reference
value is used to define the next expansion vector. This is called theroot-homingmode. In
order to converge to the correct eigenpair, a good initial guess for the vector in addition to the
eigenvalue is required, and the target eigenvalue should be well-separated from other nearby
eigenvalues. An example of root-homing convergence is given in Table VII. An estimate of
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TABLE VII

Interior Eigenpair Convergence

Method [W] nmax Nproduct

Root-homing, DPR expansion vector [64] 20 [20]
Root-homing, IIGD expansion vector [64] 16 [16]
Root-homing, SPAM+DPR expansion vector [64, 32] 16 [2, 25]
Root-homing, SPAM+IIGD expansion vector [64, 32] 16 [2, 19]
Vector-following, DPR expansion vector [64] 19 [18]
Vector-following, IIGD expansion vector [64] 20 [20]
Vector-following, SPAM+DPR expansion vector [64, 32] 15 [2, 24]
Vector-following, SPAM+IIGD expansion vector [64, 32] 16 [2, 22]

Note. Convergence of an interior root of the banded test matrix withN= 10,000 and
1= 0.75. The convergence criterion is|r | < 10−8. In root-homing mode,ρref= 10.0 and
x1= e11. In vector-following mode,z= x1= e11 andvT z= 0.7439. In all cases, the converged
eigenpair corresponds toλ10= 9.988585488303615.

the eigenvalue isρref= 10.0 and the starting vector isx1= e11, the 11th column of the unit
matrix. The Davidson procedure with the DPR expansion vector converges to the appropriate
root in 20 iterations. In this case, the IIGD expansion vector converges in only 16 iterations.
Applying a single-level SPAM to this requires only two exact matrix–vector products to
converge, a significant reduction. SPAM using the IIGD expansion vector requires the same
number of exact products, but it reduces the number of approximate products compared to
the DPR expansion vector.

The other excited state method applies to the situation in which the indexj within
the entire spectrum (1. . . N) is unknown, but it is the character of the eigenvector that
determines the appropriate eigenpair. Suppose that there is some reference vectorz, per-
haps that results from some simplified model problem, or the solution of an eigenvalue
equation that is “similar” to the current problem in some general sense. After the deter-
mination of the Ritz vectors, the overlaps (zTv j ) may be computed for (j = 1 . . .n), the
current subspace dimension. Then the approximate vector with the largest absolute overlap
is chosen to define the next correction vector. This is called thevector-following mode. An
example of vector-following convergence is given in Table VII. The same starting vector
x1= e11 is used as before for the root-homing mode, and this same vector is used also
to define the reference vector. The convergence trajectory is slightly different for vector-
following than for root-homing, and in this particular case the DPR expansion vector per-
forms slighltly better than the IIGD expansion vector for the straight Davidson method, but
the IIGD expansion vector performs slightly better for the SPAM method. In both of the
SPAM calculations, only two exact matrix–vector products are required to achieve conver-
gence, and these are significant improvements over the straight Davidson DPR and IIGD
results.

Inspection of the converged eigenvector in both the root-homing and vector-following
calculation reveals that the initial vector overlap with the final converged eigenvector is only
0.7439. If a better starting vector is used, then convergence improves for the DPR and IIGD
methods. The excellent convergence results of SPAM in this case demonstrate the inherent
advantage of isolating the quality of the initial vector from theH(0) convergence rate. In this
case, even starting with a relatively poor starting vector, the SPAM method converges in
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the same number of iterations as does a SPAM ground state calculation with the sameH(1).
By contrast, the Davidson DPR and IIGD methods require almost twice as many iterations
for this interior eigenpair (with a poor starting vector) as they require for the ground state
calculation (with a better starting vector).

Tensor-Product Examples:Tensor-product (also called direct-product, or Kronecker
product) matrices occur in many application areas. Examples include separable differential
equations, boundary value problems, translational and rotational operators in many-body
problems, and symmetry operators in group theory. A tensor product of two matrices is
defined by

(A ⊗ B)(i j )(kl)= Aik Bjl . (4.8)

If the dimensions of the component matricesA andB are NA × MA and NB × MB, re-
spectively, then in the tensor-product “matrix,” (i j ) is treated as a single row index that
ranges from 1 toNANB, and (kl) is treated as a single column index with range 1 toMAMB.
Equation (4.8) may be used to demonstrate the following useful relations with tensor-product
matrices:

a. (A+B)⊗ C=A ⊗ C+B⊗ C

b. (A ⊗ B)⊗ C=A ⊗ (B⊗ C)

c. (AB)⊗ (CD)= (A ⊗ C)(B⊗ D)

d. (A ⊗ B)−1=A−1⊗ B−1

(4.9)
e. Rank(A ⊗ B)=Rank(A) ·Rank(B)

f. Tr(A ⊗ B)= Tr(A) · Tr(B)

g. {λ(A ⊗ B)}= {λ j (A) · λk(B): j = 1. . .NA, k= 1. . .NB}
h. Det(A ⊗ B)=Det(A)NBDet(B)NA

All of these relations generalize in the obvious way for tensor-products of three or more
component matrices. Consider a general matrix–vector product of a tensor-product ma-
trix with a vector:w= (A ⊗ B)x. In the general dense case, this would appear to require
NANB MAMB floating point multiplications (and an equal number of additions). However,
Eq. (4.8) allows the matrix-vector product to be rewritten in the form

wi j =
∑
(kl)

(A ⊗ B)(i j )(kl)x(kl)=
∑

k

Aik

(∑
l

Bjl xkl

)
(4.10)

The term in parentheses is a matrix–matrix product that requiresMANB MB floating point
multiplications. The second summation, overk is a second matrix–matrix product that re-
quiresNAMANB floating point multiplications. For rectangular matricesA andB, a different
operation count may result if the summation order is interchanged. Particularly for square
component matrices of large dimension, matrix–vector products involving tensor-product
matrices are much easier to compute in this “operator” form than those of a general matrix
of the same dimensions. Sparseness and symmetry of the component matrices can reduce
the operation counts even below those given above. In the more general case, matrix–vector



THE SPAM DIAGONALIZATION METHOD 493

products of tensor-product matrices may be computed as

w(i1i2...im) =
∑

( j1 j2... jm)

(
A(1) ⊗ A(2) · · · ⊗ A(m)

)
(i1i2...im)( j1 j2... jm)

x( j1 j2... jm)

=
∑

j1

A(1)i1 j1

(∑
j2

A(2)i2 j2 · · ·
(∑

jm

A(m)im jmx( j1 j2... jm)

))
. (4.11)

In other words, each component matrixA(k) is used to transform one index in the “vector”
x, and there arem such nested one-index transformations. With a suitable arrangement
of the subscript indices, each one-index transformation is a matrix–matrix product, and
for rectangular component matrices, the total operation count depends on the order of the
summations. If each component matrix is square and of dimensionN, then Eq. (4.11)
requires onlymN(m+1) floating point multiplications. This should be compared to theN2m

multiplications that are required for a general matrix–vector product involving a matrix of
dimensionNm. Therefore, when treated in “operator” form as in Eq. (4.11), matrix–vector
products involving tensor-product matrices can require much less effort than a general
matrix–vector product of the same dimension.

Eqs. (4.9) may be used to show that the eigenpairs of a tensor-product matrix are given
by (

(A ⊗ B)− λ(i j )
)

v(i j )= 0

v(i j )= vA
i ⊗ vB

j (4.12)

λ(i j )= λi (A) · λ j (B)

Murray et al. [25] have proposed the use of tensor-product matrices as test problems for
iterative diagonalization methods because the exact eigenvalues and eigenvectors may be
determined in this product manner and compared to the results from the iterative calculation.

In the present work, the reduced computational effort for the matrix–vector products
involving tensor-product matrices is exploited in a different manner. Suppose the eigenpairs
are required for some large matrixH(0). It is assumed thatH(0) is not a tensor-product matrix,
but a good approximationH(1) exists that is of tensor-product form. Such approximations
often occur naturally, for example, from low-order operator expansions or truncations,
combined with an appropriate formal expansion basis. The goal in the present work is to
exploit the tensor-product nature ofH(1) in order to improve the efficiency of the eigenvector
determination ofH(0).

In order to model this general kind of matrix decomposition, a perturbed-tensor-product
matrixH(0) will be defined as

H(0)=H(1)+β∆, (4.13)

in whichH(1)=A(1) ⊗ A(2) ⊗ · · · ⊗ A(m) is them-fold tensor-product of the 4× 4 matrices
used by Murrayet al. [25]:

A(k+1)=


3+ k/10 1/10 2/10 3/10

1/10 4+ k/10 0 0

2/10 0 5+ k/10 0

3/10 0 0 6+ k/10

; for k= 0 . . . (m− 1). (4.14)
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The perturbation matrix∆ is defined with the elements

1 jk = −1/2; for | j − k| =1

11N = 1N1= −1/2 (4.15)

1 jk = 0; otherwise.

This matrix occurs in the H¨uckel theory of the molecular electronic structure of cyclic
polyenes[10], and both the eigenvalues and the eigenvectors have closed-form, analytic
solutions. The lowest eigenvalue isλ1=−1, and the corresponding (unnormalized) eigen-
vector is given byvk= 1 for k= 1. . .N; the largest eigenvalue isλN =+1, and the corre-
sponding eigenvector isvk= (−1)k for k= 1. . .N; the remaining eigenvalues are doubly
degenerate and are otherwise distributed evenly about zero in between these extreme val-
ues. This results in the norms‖∆‖=1 and‖H(1) − H(0)‖=β. The perturbation is not of
a tensor-product form, and this ensures thatH(0) is not an exact tensor-product. However,
β will be chosen appropriately in order to ensure thatH(1) is a good approximation that
can be used to accelerate convergence of the eigenvectors. The sparse form of∆ allows for
efficient computation of matrix–vector products, and this combination results in good test
problems for the SPAM method. The test cases in [25] involve the 8-fold and the 10-fold ten-
sor products. The corresponding matrix dimensions are 48= 65,536 and 410= 1,048,576,
respectively. Ordinarily, dense matrix–vector products with matrices of these dimensions
would require 416= 4.3 · 109 and 420= 4.1 · 1012 floating point multiplications respectively;
by contrast the tensor-product contributions, computed according to Eq. (4.11), require only
8 · 49= 2.1 · 106 and 10· 411= 4.2 · 107 floating point multiplications, respectively (ignor-
ing the sparseness and symmetry in the component matrices), and the operation count for
the perturbation matrix is insignificant. If these test matrices are taken as models of general
matrices of the same dimensions, then these operation counts would results in effort ratios
of µ8= 4.9 · 10−4 andµ10= 1.0 · 10−5. These effort ratios are typical of tensor-product
approximations, and these examples show the tremendous advantage this type of approx-
imation offers in improving efficiency when combined with the SPAM method. Although
these test cases are nontrivial, they do provide a relatively inexpensive (a few seconds for
each matrix–vector product on current desktop computers) model for testing the behavior
of SPAM for tensor-product matrices.

The convergence summaries are given in Table VIII for the lowest few roots of the
m= 8 andm= 10 matrices. For both matrices, the perturbation parameterβ was chosen to
result in 10 to 20 DPR iterations with the usual Davidson method to converge the lowest
eigenpair. This level of perturbation is representative of operator approximations in many
applications. The same four convergence approaches are taken as before: the vectors are
converged either sequentially or simultaneously, and the three possible choices to determine
the next expansion vector are compared for the simultaneous convergence cases. In all cases,
the initial vectors were chosen to be the appropriateH(1) eigenvector, which was computed
as a tensor product of the component matrix eigenvectors according to Eq. (4.12).

The DPR convergence summaries for the lowest 10 roots are given in the first four rows
of Table VIII. As with the previous banded matrix examples, the simultaneous conver-
gence options result in fewer matrix–vector products than the “one at a time” convergence
approach, and the simultaneous convergence options require larger maximum subspaces.

The convergence summaries for the SPAM calculations, with the usual DPR expansion
vector, are given in rows 4–8 in Table VIII. Significant reductions in the numbers ofH(0)
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TABLE VIII

Perturbed-Tensor-Product Convergence Results for Multiple Eigenvectors

m= 8 m= 10

Method nmax Nproduct Effort nmax Nproduct Effort

DPR
One vector at a time 40 [203] 1.000 26 [145] 1.000
Simultaneous/lowest 82 [82] 1.000 99 [99] 1.000
Simultaneous/cycle 94 [94] 1.000 94 [94] 1.000
Simultaneous/largest|r j | 95 [95] 1.000 93 [93] 1.000

SPAM+DPR µ= 4.9 · 10−4 µ= 1.0 · 10−5

One vector at a time 42 [20, 164] 0.099 26 [20, 132] 0.138
Simultaneous/lowest 83 [19, 87] 0.232 99 [20, 104] 0.202
Simultaneous/cycle 86 [19, 90] 0.203 94 [20, 101] 0.213
Simultaneous/largest|r j | 95 [19, 99] 0.201 94 [20, 99] 0.215

SPAM+IIGD µ= 2.0 · 10−3 µ= 4.0 · 10−5

One vector at a time 11 [20, 20] 0.099 11 [20, 20] 0.138
Simultaneous/lowest 20 [19, 21] 0.232 20 [20, 21] 0.202
Simultaneous/cycle 20 [19, 21] 0.203 20 [20, 21] 0.213
Simultaneous/largest|r j | 20 [19, 21] 0.200 20 [20, 21] 0.215

Note. Convergence summaries of the lowest 10 roots of them= 8 andm= 10 perturbed-tensor-product matrices
described in the text. The initial vectors in all cases are the eigenvectors of the tensor-product matrices, which
were computed as tensor-products of the eigenvectors of the 4× 4 component matrices. The matrix–vector product
counts are the totals for all 10 roots. For them= 8 calculations,N= 65,536,β = 10, and|r j | < 10−1. For the
m= 10 calculations,N= 1,048,576,β = 100, and|r j | < 100.

products are achieved for the “one at a time” convergence mode and for the simultaneous
convergence modes. The total relative effort is given for each convergence mode relative
to the corresponding DPR convergence using theµ effort ratios discussed above. The
reduction in effort is significant for all of the SPAM cases, but largest for the “one at a time”
convergence mode, resulting in a 91% reduction of effort relative to the DPR “one at a time”
calculation for them= 8 matrix, and an 86% reduction of effort for them= 10 matrix.

In addition to using the diagonal elements ofH(0) as the preconditioner in the DPR
method, the tensor-product nature ofH(1) allows for a significant improvement when using
the IIGD/GJD procedure to determine the expansion vectors:(

H(1) − ρ)δIIGD =−r + εx. (4.16)

The spectral form,(H(1) − ρ)=U(D− ρ)UT , with

U=U(1) ⊗ U(2) ⊗ · · · ⊗ U(m) (4.17)

in which U(k) is the set of eigenvectors of the component matrixA(k), allows for the effi-
cient computation of the inverse. This is called afast inverseprocedure. For the component
matrices in Eq. (4.14), the eigenvectors are the same for each component matrix, and the
corresponding component eigenvalues are related by a uniform shift of 1/10 from the pre-
vious component matrix. This leads to some simplifications in computing the fast inverse,
but it does not result in any significant additional performance advantage. The eigenval-
uesD are products of the component matrix eigenvalues, the generalization of Eq. (4.12).
This spectral decomposition allows the IIGD/GJD expansion vector to be computed
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with the steps

rU = UT r

xU = UTx
(4.18)

(D− ρ)δU = −rU + εxU

δIIGD = UδU .

During the SPAM iteration, each IIGD/GJD expansion vector requires four total matrix–
vector products (two withUT , one withU, and one, after orthonormalization, withH(1))
compared to the singleH(1) matrix–vector product each iteration with the simple diagonal
preconditioner. The effort ratioµ is four times larger for this procedure than that for a
SPAM iteration involving the simple diagonal preconditioner. Therefore, in order to improve
efficiency, the IIGD/GJD procedure should converge in 1/4, or fewer, of the number of
SPAM iterations required with the simple diagonal preconditioner. The optimal choice of
expansion vector method is therefore problem-specific.

The convergence summary of SPAM using the IIGD/GJD expansion vectors is given in the
last four rows of Table VIII. These results may be compared directly with the previous four
rows, which used the DPR expansion vectors in the SPAM procedure. For both them= 8
andm= 10 matrices, the SPAM+ IIGD expansion vectors result in significant reduction
in the number ofH(1) products that are required, but, because of the larger effort ratios
µ, only modest overall efficiency improvements compared to the DPR expansion vectors.
However, the maximum subspace dimension is reduced significantly for the IIGD/GJD
expansion vector choice compared to the DPR expansion vector choice.

For future reference, the lowest computed eigenvalues are given in Table IX for both
of these tensor-product test matrices. The unperturbedβ = 0 eigenvalues are the tensor-
product eigenvalues, the lowest of which are given by Murrayet al.(note the typographical
error forλ2 in Ref. 25). These may also be computed by taking the appropriate products of
the eigenvalues of the component matrices of Eq. (4.14). The perturbedβ 6= 0 eigenvalues
have no simple or closed-form solution.

MRSDCI Examples: The multireference single- and double-excitation configuration
interaction (MRSDCI) code in the COLUMBUS Program System [11, 12] is a “direct-CI”

TABLE IX

Eigenvalues of the Perturbed-Tensor-Product Matrices

m= 8; N= 65,536 m= 10; N= 1,048,576

β = 0 β = 10 β = 0 β = 100

λ1 13517.53848 13518.20621 194306.6355 194313.3266
λ2 17479.77431 17479.04546 248296.3451 248289.0640
λ3 17591.64848 17592.44787 249739.2683 249747.2806
λ4 17710.02377 17710.67916 251261.4363 251268.0025
λ5 17835.48382 17836.15370 252869.5615 252876.2711
λ6 17968.68428 17969.35303 254571.1364 254577.8342
λ7 18110.36428 18111.03326 256374.5505 256381.2504
λ8 18261.36016 18262.02920 258289.2285 258295.9287
λ9 18422.62196 18423.29105 260325.7948 260332.4955
λ10 21228.42326 21228.60963 262496.2714 262502.9724
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method, which means that the Hamiltonian matrix is treated in operator form—the required
matrix–vector products are computed “directly” from the underlying repulsion integrals
and coupling coefficients. The repulsion integrals are partitioned based on the number of
“internal” and “external” orbital indices, and the coupling coefficients are partitioned and
computed correspondingly. The most important contributions to the eigenvalue are from
the repulsion integrals indexed by four “internal” orbital indices,gpqrs; these include both
the reference configuration state function (CSFs) and those related to the reference CSFs
by rearrangements of the electrons within the internal orbitals. In the graphical unitary
group approach used in the COLUMBUS Program System, these CSFs are called the “z-
walks.” The next most important contributions to the eigenvalue are those that involve
the interactions of the z-walks with the other expansion CSFs. These involve only the
small subset of the integrals with three internal,gapqr, and two internal,gabpq andgapbq,
orbital indices. These interactions are sufficient to determine the first-order wave function
and the second-order energy contributions in the perturbation expansion. An approximate
Hamiltonian matrix may be defined that consists only of the diagonal elements and of
the rows and columns corresponding to the z-walks. This is called a “Bk” approximate
Hamiltonian matrix. Matrix–vector products with the Bk and exact Hamiltonian matrices
correspond to typical effort ratios ofµ= 10−1 toµ= 10−3.

This suggests the use of the Bk Hamiltonian as theH(1) matrix, andH(0) as the exact
matrix in the SPAM procedure [13]. The convergence summaries for two test calculations
are given in Table X. The first calculation is for a single-reference wave function for the3B1

ground state of the CH2 molecule. This small calculation consists of 2,036 expansion CSFs
with two z-walks, and this results in a measured effort ratio ofµ= 1.03· 10−1. The second
calculation is for a multireference wave function for the ground state of the CH3 radical. This
is a larger test case, but is still modest, with 70,254 expansion CSFs and 188 z-walks, and
this results in a measured effort ratio ofµ= 6.04· 10−2. In both cases, the initial vector is the
column of a unit matrix corresponding to the lowest diagonal element. As seen in Table X,
the SPAM procedure only improves the overall efficiency by a modest factor of 10%–30%,
depending on the convergence tolerance. This is because the Bk Hamiltonian is a rather
poor approximation to the exact Hamiltonian matrix, and leads to a large‖H(1) − H(0)‖
(which was empirically estimated in these calculations for the dynamic tolerance). This

TABLE X

Convergence Summary for MRSDCI Calculations

CH2(3B1) CH3(2A ′′2)
Convergence Calculation

tolerance type nmax Nproduct nmax Nproduct

|r | < 10−3 DPR 6 [6] 6 [6]
SPAM 5 [4, 7] 6 [5, 9]

|r | < 10−5 DPR 9 [9] 10 [10]
SPAM 8 [7, 12] 9 [9, 14]

|r | < 10−7 DPR 12 12 15 [15]
SPAM 10 [10, 16] 13 [13, 18]

Note. The SPAM calculations use the Bk Hamiltonian for H(1).
N= 2,036 and Nz= 2 for the CH2 calculations; N= 70,254 and
Nz= 188 for the CH3 calculations. The initial vector in all cases is the
column of the unit matrix corresponding to the lowest diagonal element.
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is also evident from the convergence trajectories in which a singleH(1) iteration often is
followed immediately by a subsequentH(0) iteration. Future effort will be directed toward
finding more accurate approximateH(1) Hamiltonian matrices.

Rational-Function Direct-SCF Examples:Self-Consistent Field (SCF) wave function
optimization involves the optimization of a trial electronic structure wave function with
respect to the essential subset of orbital rotations [14]. One approach to this nonlinear op-
timization problem involves a sequence of rational function approximations. Optimization
of an intermediate rational function approximation results in the eigenvalue equation(

B− λ w

wT −λ
)(

k
1

)
=
(

0
0

)
. (4.19)

In this equation, the matrixB is the orbital-rotation Hessian matrix (the matrix of second
derivatives) evaluated with the current reference wave function, the vectorw is the orbital-
rotation gradient, andk is the vector that defines the optimal orbital rotations within the
local rational-function approximation. The vectork is used to update the wave function
and to define a new reference wave function expansion point for the next rational function
approximation; this sequence of wave function updates constitutes an “outer” iteration.
For each “outer” iteration, a single eigenpair of Eq. (4.19) is required, and it is the one
that corresponds to the lowest eigenvalue. The iterative solution of this eigenvector is the
“inner” iteration. Further details of this kind of wave function optimization may be found
in [14, 15]. For the present discussion, the form of the matrixB is of interest:

B(ia)( jb)= 2F [MO]
ab δi j − 2F [MO]

i j δab+ 8

(
2g[MO]

aibj −
1

2
g[MO]

ajbi −
1

2
g[MO]

abij

)
. (4.20)

During the eigenpair solution, the Fock matrix elementsFab andFi j are available, but the
remaining repulsion integral contributions to the matrix (2gaibj − 1/2gajbi − 1/2gabij) are
relatively expensive to include. For large molecular problems in which the “direct-SCF”
approach is used, these contributions must be recomputed on-the-fly as the matrix–vector
products are needed during the iterative solution to the eigenvalue equation [16]. This
suggests the SPAM procedure using the approximation

B(0)(ia)( jb)= B(1)(ia)( jb)+ 8

(
2g[MO]

aibj −
1

2
g[MO]

ajbi −
1

2
g[MO]

abij

)
(4.21)

B(1)(ia)( jb)= 2F [MO]
ab δi j − 2F [MO]

i j δab= 2
(

1dd ⊗ F[MO]
vv − F[M O]

dd ⊗ 1vv
)
(ia)( jb)

. (4.22)

The tensor-product form of theB(1) matrix is shown explicitly in Eq. (4.22). The relative
effort between aB(0) and the simplerB(1) matrix–vector product ranges fromµ= 10−2

to µ= 10−4 or better [15, 17]. This approximation to the Hessian matrix has also been
used successfully by Wong and Harrison [18] in a preconditioned-conjugate-gradient opti-
mization. Table XI summarizes the DPR and SPAM convergence using this tensor-product
approximation to the Hessian matrix for the Fe(CO)5 molecule. This calculation requires
three or four “outer” iterations (each of which requires a new eigenvector solution) to
converge, depending on the overall convergence tolerance. The number of matrix–vector
products required to achieve convergence is given for each of the “outer” iterations, along
with the overall totals. The efficiency improvements are modest for this calculation, ranging
from 10% to 30% reductions in the total effort.
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TABLE XI

Convergence Summary for Rational-Function SCF

Optimizations for Fe(CO)5

Nproduct “Outer” iterations
Convergence Calculation Nproduct

tolerance type total 1 2 3 4

|r | < 10−3 DPR [8] [3] [4] [1]
SPAM [7, 13] [2, 3] [4, 9] [1, 1]

|r | < 10−5 DPR [13] [3] [6] [3] [1]
SPAM [10, 20] [2, 3] [4, 9] [3, 7] [1, 1]

|r | < 10−7 DPR [16] [3] [6] [6] [1]
SPAM [13, 33] [2, 3] [4, 9] [6, 20] [1, 1]

There are two other important features of this particular optimization problem that should
be mentioned because they apply generally to other similar optimization problems. First,
because the eigenvalue equation is embedded within an “outer” level optimization process,
the convergence criteria for the individual eigensolutions changes as the overall optimization
process converges; in particular in the present application, during the initial outer iterations,
the eigensolution involvingB(1) alone is often sufficiently accurate, and the costs for theB(0)

products increases as the repulsion integral thresholds are tightened toward convergence.
Secondly, the above equations are written in the molecular orbital [MO] basis. However,
the actual calculations are done in the atom-centered atomic-orbital [AO] basis where com-
putation of the repulsion integralsg[AO] is easiest;B(1) is also a tensor-product matrix in this
basis [14–17]. This is typical of such tensor-product approximations. Because the tensor-
product nature of the matrix is maintained after such basis transformations, the individual
component matrices may be treated in the most convenient or most efficient manner.

Ill-Conditioned Eigenproblem Examples:Because of the finite precision used in com-
putations, the computed eigenvalueρ j and eigenvectorv j of the matrixH almost satisfy
[1] the exact equation

(H+E− ρ j )v j = 0 [exact arithmetic]. (4.23)

That is, the computed eigenpair is almost the exact eigenpair of a matrix (H+E) that is
close to the matrixH. Using backward-error-analysis [1], the error matrixE satisfies

‖E‖ ≤ p(N)ε‖H‖, (4.24)

wherep(N) is a modestly growing polynomial of the matrix dimensionN. The termε is
the relative precision of the floating point representation and is called themachine epsilon.
For simplicity, the polynomial will be approximated hereafter asp(N) ≈ 1. The bound
Eq. (A1) may be used to estimate the absolute error of the computed eigenvalue:

|λ j − ρ j | ≤ ‖E‖ ≈ ε‖H‖. (4.25)

The relative error of the eigenvalue is then bounded by

ej ≡ |λ j − ρ j |
|λ j | ≤ ‖E‖|λ j | ≈ ε

‖H‖
|λ j | ≤ ε

Max|λ1:N |
Min|λ1:N | . (4.26)
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The ratio of the largest exact eigenvalue magnitude and the smallest exact eigenvalue mag-
nitude on the right-hand side of Eq. (4.26) is called thematrix condition number. Eq. (A2)
gives a similar bound on the accuracy of the computed eigenvector

|Sin(ψ j )| ≤ ‖E‖
Gap(λ j , j,H)

≈ ε ‖H‖
Gap(λ j , j,H)

. (4.27)

From Eqs. 4.26 and 4.27 it is seen that the accuracy with which an eigenvalue and
eigenvector may be computed using finite precision arithmetic depends on the machine
epsilon, the condition number of the matrix, on the eigenvalue being computed, and on the
gap of the eigenvalue being computed. An ill-conditioned eigenproblem is one in which the
accuracy of the desired eigenpair of a given problem is limited because of an unfortunate
combination of these factors.

In order to examine the convergence behavior of the SPAM method with ill-conditioned
eigenproblems, a model matrixH is defined in spectral form according to

H = UDUT (4.28)

Djk = 1k−1δ jk; for all j, k (4.29)

U = (1+Y)(1− Y)−1 (4.30)

Yk,k+1 = −Yk+1,k=−Y1N =YN1=α; for all k (4.31)

Yjk = 0; otherwise.

The exact eigenvalues ofH are the elements of the diagonal matrixD, and the corresponding
eigenvectors are the columns of the orthogonal cyclic Toeplitz matrixU. Specifically, there
is an eigenvalue with the positive valueλk=1k−1 and with the corresponding eigenvector
vk=Uek whereek is the unit vector corresponding to thekth coordinate. The scalar param-
eter1, along with the matrix dimensionN, determines the condition number of the matrix
and the eigenvalue gaps. The scalar parameterα defines the skew-symmetric matrixY,
which may be regarded as a generator for the orthogonal rotation matrixU. The parameter
α corresponds roughly to a rotation angle, with smaller anglesα corresponding to smaller
rotations which, in turn, result in smaller off-diagonal elements of the matrixH. With these
scalar parameters, the condition number, the eigenvalue gaps, and the diagonal dominance
of the matrix may be controlled.

For large matrix dimensionN, it is not practical to compute the matrixH explicitly.
However, matrix–vector products may be computed efficiently in operator form as

H x= (1+Y)(1− Y)−1 D(1− Y)(1+Y)−1 x, (4.32)

in which the individual factors operate on the trial vectorx in right-to-left order. Because
of the special form of the skew-symmetric matrixY, both the matrix–vector products and
the linear equation solutions for the individual factors may be computed with onlyO(N)
arithmetic operations.

The rotation matrixU may be approximated by truncation of the series expansion:

Um = 1+ 2Y+ 2Y2+ 2Y3+ · · · + 2Ym (4.33)

= 1+Y(2+ · · · (2+Y(2+Y(2+ 2Y)))) (4.34)

This allows an approximate matrix to be defined as

H[1] =UmD UT
m. (4.35)
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TABLE XII

Convergence Summaries for Ill-Conditioned Eigenproblems

k= 1 : 5 k= (N − 4) : N

1 λN/λ1 [m] λ2 − λ1 nmax Nproduct ek λN − λN−1 nmax Nproduct ek

1.01 2.1E4 [∞] 1.0E-02 19 [19] 5.2E-13 2.1E+02 13 [13] 3.3E-15
[∞, 16] 23 [10, 39] 6.7E-13 14 [5, 14] 3.3E-15
[∞, 16, 12] 21 [10, 18, 68] 6.7E-13 16 [5, 10, 30] 3.3E-15

(1.01)−1 2.1E4 [∞] 4.8E-05 27 [27] 1.9E-13 9.9E-03 13 [13] 4.4E-16
[∞, 16] 29 [11, 54] 1.8E-14 14 [5, 14] 2.2E-16
[∞, 16, 12] 43 [12, 23, 152] 1.9E-14 16 [5, 10, 27] 5.5E-16

1.05 1.5E21 [∞] 5.0E-02 — — 2.6E+4 7.0E+19 12 [12] 2.7E-14
[∞, 16] — — 2.6E+4 12 [5, 12] 2.6E-14
[∞, 16, 12] — — 2.6E+4 13 [5, 10, 21] 2.7E-14

(1.05)−1 1.5E21 [∞] 3.4E-23 — — 1.5E+5 4.8E-02 12 [12] 1.0E-15
[∞, 16] — — 1.5E+5 12 [5, 12] 6.7E-16
[∞, 16, 12] — — 1.5E+5 13 [5, 10, 12] 6.7E-16

Note. For all matricesN= 1000, α= 0.1, and the final convergence criteria are set to guarantee that
Sin(ψk) ≤ 10−8. The matrix–vector product counts are for all five computed eigenpairs. The relative errorsek

are the maximum for the five computed eigenvalues.

Because the truncatedUm matrix is not orthogonal, both the eigenvalues and the eigenvectors
of H[1] differ from those ofH. The accuracy of the approximate matrixH[1] depends on
the expansion lengthm, longer expansions being more accurate generally than shorter
expansions. Matrix–vector products (Umx) are computed recursively using the factored
representation of Eq. (4.34), the effort for which scales modestly asO(mN).

Table XII shows the convergence summaries for four different sets of calculations. In
all cases,N= 1000, α= 0.1, and the final convergence criteria are set to guarantee that
Sin(ψk) ≤ 10−8 according to the bound Eq. (A15). Because the exact eigenvalue gaps are
known for this model problem, they were used to set the convergence criteria. Up to two
levels of approximation are used in these calculations:H[1] is constructed from aU16 trun-
cation, andH[2] is constructed from aU12 truncation. Other lower-order expansions were
also examined, but these approximations resulted either in impractically slow SPAM con-
vergence, or they were not sufficiently accurate to improve convergence over the reference
Davidson method. The exact matrixH is denoted asm=∞ in Table XII. In all cases, the
expansion vectors are constructed using diagonal preconditioned residuals. The initial vec-
tors in all cases are the appropriate columns of the unit matrix. The four sets of calculations
differ by the choice of1.

The first set of calculations corresponds to1= 1.01. The condition number for this
matrix is 2.1 · 104, which corresponds to a fairly well-conditioned matrix. Convergence
summaries for the lowest five eigenpairs are given in the first columns, and the convergence
summaries for convergence of the highest five eigenpairs are given in the last columns. For
the lowest eigenpair calculations, the number of exact matrix–vector products required is
reduced from 19, for the straight Davidson method, to 10 for the SPAM method. For the
highest eigenvalues, the product count is reduced from 13 to only 5—only a single exact
matrix–vector product is required to achieve convergence for each of the higher eigenpairs.
The individual eigenvalues are more widely separated at the high end of the spectrum, and
this results in the superior convergence rate. The gaps forλ1 andλN are shown in Table XII.
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Both the Davidson and the SPAM convergence are improved because of the larger gaps.
The relative errorsek in the eigenvalues are also included in Table XII. The relative error
basically indicates the number of correct significant digits in the computed eigenvalue. The
maximum relative error for the five computed eigenvalues is given in the table, but in all
cases, the errors were comparable for all of the individual eigenvalues in the set. As seen in
Table XII, the relative error is somewhat larger for the small end of the spectrum than for
the large end of the spectrum. The lowest computed eigenvalues are two or three significant
digits less accurate than the highest computed eigenvalues, which in turn are correct to
almost machine precision. This is a result of the condition number of the matrix as shown in
Eq. (4.26). Loosely speaking, the relative error when a small eigenvalue is contaminated by
a large eigenvalue is larger than the relative error when a large eigenvalue is contaminated
by a small eigenvalue. The maximum subspace dimension is also given in Table XII, and
it is seen that it changes very little for this matrix for the two levels of SPAM. The most
significant improvement for the SPAM method is the reduction of the number of exact
matrix–vector products that are required to achieve convergence.

The second set of calculations corresponds to1= (1.01)−1. It may be verified that this
matrix is the inverse of the first matrix, so the condition number is the same. However, the
eigenvectors corresponding to the small eigenvalues of the first matrix correspond to those of
the large eigenvalues of the second matrix. The eigenvalues of the first matrix are the inverse
of the eigenvalues of the second matrix. Consequently, the eigenvalue gaps of the second
matrix are smaller than those of the first matrix. Because of this difference in the gaps, the
convergence rates are slower for the second matrix than for the corresponding eigenpairs
of the first matrix for the lower eigenpairs. This slower convergence is observed both for
the Davidson iterations and for the SPAM iterations. Just as for the first matrix, the higher
eigenpairs are converged with a single exact matrix–vector product each using the SPAM
method. It is also seen that the relative errors are about the same for this second matrix as
for the first matrix, and in particular, the lowest computed eigenvalues are less accurate than
the highest computed eigenvalues by only two or three significant digits. The maximum
subspace dimension is fairly constant for the convergence of the higher eigenpairs, but it
becomes significantly larger for the two-level SPAM calculation for the lower eigenpairs
due to the smaller eigenvalue gaps.

The third set of calculations corresponds to1= 1.05. The condition number for this
matrix is 1.5 · 1021, a large value that corresponds to a very ill-conditioned matrix. Con-
vergence could not be achieved for the lowest eigenpairs of this matrix. The relative errors
are given for the partially converged eigenvalues, and it is clear that no progress toward
convergence can be attained under any circumstances. Not only are there no significant
digits that are correct in the eigenvalues, but, consistent with Eq. (4.26), the partially con-
verged eigenvalues are incorrect by several orders of magnitude. Even if the procedure is
started with eigenvectors that are exact to machine precision, the numerical errors involved
in computing the matrix–vector product result in large residual norms and in incorrect
computed eigenvalues. This is because of the extremely large condition number for this
matrix. This demonstrates that it is not just the convergence of the iterative procedure that
is problematic, it is the fundamental matrix–vector product operation itself that cannot be
performed accurately. However, even with the poor condition number for this matrix, rapid
convergence could be achieved for the highest eigenpairs, and furthermore, consistent with
Eq. (4.26), the computed eigenvalues display small relative errors.

The fourth set of calculations corresponds to1= (1.05)−1. This results in the same
poor condition number as for the third matrix, and just as for the third matrix, convergence
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could not be achieved for the lowest eigenpairs. Rapid convergence could be achieved for
the highest eigenpairs, and the computed eigenvalues show very small relative errors. It is
interesting to note that the computed eigenvectors for the highest eigenvalues are exactly
those that would have been computed (with exact arithmetic) for the lowest eigenpairs of the
third matrix. Similarly, the computed eigenvectors corresponding to the highest eigenvalues
of the third matrix correspond exactly to those that would have been computed (with exact
arithmetic) for the lowest eigenpairs of the fourth matrix.

The need to compute eigenpairs of ill-conditioned eigenvalue equations or clustering of
eigenvalues arises in a wide variety of applications. Among these are problems in compu-
tational chemistry (e.g., the cumulative reaction probability formulation of Miller [19] in
chemical kinetics), two-dimensional disordered atomic systems [20, 21], and the solution of
generalized eigenvalue problems arising in structural mechanics and other areas (e.g., ocean
wave modeling) [22, 23]. The above examples show that the SPAM method may be applied
to these equations in certain situations, and that significant improvements in efficiency can
be achieved compared to the usual Davidson method. First, the problem should be expressed
in such a way that eigenpairs at the high end of the spectrum are computed. This may involve
the use of shift-and-invert transformations of the original problem in order to achieve this
formulation. Secondly, appropriate, and sufficiently accurate, approximate matrices must
be devised for this transformed problem in order to apply the SPAM procedure.

5. SUMMARY AND CONCLUSIONS

A new diagonalization method, SPAM, has been developed and applied to several matrix
eigenproblems. This method is a modification of the Davidson subspace method. It uses an
approximate matrix, or a sequence of approximate matrices, along with projection operators,
in order to generate the basis vectors for the subspace expansion. The goal of the method
is to reduce the number of exact matrix–vector products that are required, and, in this
way, to reduce the overall effort required to achieve convergence. The method is applicable
to the lowest eigenpair of the spectrum, the lowest few eigenpairs, the highest eigenpair,
the highest few eigenpairs, or selected interior eigenpairs determined either with vector-
following or root-homing approaches. A dynamical convergence criterion is developed
that allows for efficient early termination of the intermediate iterations for single-level
and multilevel SPAM. Contraction of the intermediate-converged eigenvectors in order to
construct the expansion subspace for multiroot calculations is achieved with singular value
decomposition.

The method is applied to banded matrices, perturbed-tensor-product matrices, MRSDCI
Hamiltonian matrices, a set of ill-conditioned matrices, and the eigensystem that results from
rational-function direct-SCF wave function optimization. In these applications, approximate
matrices are generated by deletion of small matrix elements, deletion of off-diagonal blocks
of matrix elements, tensor-product approximations, operator approximation, and by trun-
cation of series expansion. With sufficiently accurate approximations, the SPAM method
improves the convergence efficiency in all of these applications, in some cases only mod-
estly, and in some cases dramatically. Several examples that involve “one vector at a time”
convergence of multiple eigenpairs show extraordinary improvements over the reference
Davidson procedure. The expansion vectors are generated using the usual preconditioned
residual vector and the IIGD/GJD procedure, with the latter displaying superior conver-
gence with suitably accurate preconditioners, and both procedures are observed to display
convergence superior to the Krylov/Lanczos approach.
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Many eigenvalue problems lend themselves naturally to formal approximation. The so-
lution of the approximate problems leads to conceptual insight in addition to approximate
numerical solutions to the original problem. In some cases, there exists a sequence of
successively simpler approximations, each requiring less effort than its predecessor. The
multilevel SPAM method provides a framework within which each of these approximations
can be used to improve the efficiency of the original eigenproblem.

A standard Fortran 90/95 subroutine has been written that implements the multiroot
multilevel SPAM method described in this work. This subroutine, along with documentation
and test examples, is available from theanonymous ftpserverftp.tcg.anl.gov.

There are several directions for future extensions of this method. The first is to the
generalized symmetric eigenvalue problem (H − λ j S)v j = 0, in which the metric matrixS
is symmetric and positive definite. The iterative subspace solution of this equation has been
analyzed in detail by Sleijpenet al. [27, 28], and we believe that this analysis applies in a
straightforward way to the SPAM method. A second possible extension is to the general
nonsymmetric eigenvalue problem. This extension is somewhat more problematic [3]. We
are also examining the use of the SPAM in the solution of other linear and nonlinear matrix
equations.

APPENDIX A: BOUNDS AND ESTIMATES

In this appendix, an analysis of the SPAM procedure is presented. This includes vari-
ous bounds and error estimates of the eigenvalues and eigenvectors. Suppose a selected
eigenvectorv(0)j and eigenvalueλ(0)j of a symmetric matrixH ≡ H(0) are desired, and an
approximate matrixH(1) is chosen, constructed, or made available with the corresponding
eigenpairv(1)j andλ(1)j . In general, the eigenvalues and corresponding eigenvectors of the
two matrices should be “close” in some sense, and in particular this should be true for the
eigenpair of interest. The rigorous bounds [1]∣∣λ(0)j − λ(1)j

∣∣ ≤ ∥∥H(1) − H(0)
∥∥ (A1)∣∣Sin

(
6
(
v(1)j , v

(0)
j

))∣∣ ≤ ∥∥H(1) − H(0)
∥∥

Gap
(
λ
(1)
j , j,H(γ )

) (A2)

(with γ = 0 or 1) apply to all of the eigenvectors and eigenvalues of the two matrices. The
matrix norm used in this discussion is the spectral norm defined as

‖A‖=Max{|λ j (A)| : j = 1 . . . N}, (A3)

whereλ j (A) is the j th eigenvalue of the matrixA in which the eigenvalues are ordered
from smallest to largest. For the matrix norm‖H(1) − H(0)‖ in particular, the eigenvalues
of the matrix (H(1) − H(0)) will be, generally, both positive and negative, but they should
all be “small” in magnitude in a qualitative sense for these bounds to be useful. The gap
function in Eq. (A2) is defined as

Gap(α, j,A)=Min{|α − λk(A)| : k= 1 . . . N; k 6= j }. (A4)

In words, it is the smallest gap between the scalar argumentα and the nearest eigenvalues
that surround thej th eigenvalue of the matrixA. Equation (A2) suggests that, for an
isolated eigenvalue (i.e., a large gap), the corresponding eigenvector may be approximated
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well from the approximate matrix, but for closely spaced eigenvalues (with small gaps
separating them), it is only the vector subspace spanned by the entire set of nearby vectors
that is approximated well. This is discussed in more detail in [1]. Note that the gap of either
matrix H(0) or H(1) may be used in Eq. (A2) as appropriate. In particularly bad situations
of clustered eigenvalues, the corresponding eigenvectors may be very sensitive to the small
differences in (H(1) − H(0)), whereas the eigenvalues themselves are relatively stable to
these small differences. Another useful property of a matrix is theSpread(A), defined as

Spread(A) ≡ λN(A)− λ1(A), (A5)

which is the numerical range of the eigenvalues of the matrixA.
The angleψ = 6 (v,w) between two arbitrary vectorsv andw is defined in the usual way

Cos(ψ)=
(
vTw

)
|v| · |w| . (A6)

It is also useful to decompose an arbitrary unit vector into orthonormal components, such
as

w=Cos(ψ)v+Sin(ψ)v⊥. (A7)

This decomposition is consistent with the definition ofψ in Eq. (A6).
In the SPAM method, the selected eigenvector and eigenvalue are iterated to convergence,

so the bounds in Eqs. (A1) and (A2) are not especially useful in determining the accuracy
of this eigenpair. This is because the above general bounds must hold also for the eigenpairs
that are not being improved during the iterative process. In order to refine the bounds of the
selected eigenpair, the iterative procedure itself must be examined.

During the iterative process, there is some set of expansion vectors{x j : j = 1 . . .n},
assumed herein to be orthonormal, that are collected into the matrixX[n] and that define the
projection operatorsP[n] =X[n]X[n]T andQ[n] = 1− P[n] . These projectors, in turn, define
the SPAM:

H̄[n] ≡ (P[n]H(0)P[n] +P[n]H(0)Q[n] +Q[n]H(0)P[n]
)+Q[n]H(1)Q[n] (A8)

= H(0)+Q[n]
(
H(1) − H(0)

)
Q[n] . (A9)

Note that the first form is used in the computation because the first three terms in paren-
theses may be constructed entirely from the stored vectorsX[n] and matrix–vector products
W[n] =H(0)X[n] and do not require an explicit computation of a matrix–vector product with
the matrixH(0). The second form is convenient for some of the formal analysis in this
section. The eigenpair is determined from this approximate SPAM:(

H̄[n] − λ[n]
j

)
v[n]

j = 0. (A10)

The normalized eigenvectorv[n]
j may be decomposed according to

v[n]
j =X[n]c[n] +Sin

(
ψ [n]

)
x[n+ 1], (A11)

in which the unit vectorx[n+ 1] is orthogonal toX[n] . The normalization isc[n]Tc[n] +
Sin2(ψ [n])= 1. This is a generalization of the decomposition of Eq. (A7). As the iterative
SPAM procedure converges|c[n] | → 1 and Sin(ψ [n])→ 0.
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Once an eigensolution of̄H[n] has been computed, the accuracy of the originalH(0)

eigensolution may be assessed by computing the residual vector

r j =
(
H(0) − ρ j

)
v[n]

j , (A12)

with ρ j = v[n]T
j H(0)v[n]

j being the scalar that minimizes the residual norm. A conservative
bound on an exact eigenvalue is given by [1]∣∣ρ j − λ(0)j

∣∣ ≤ |r j |. (A13)

Another (ultimately tighter) bound is given by

∣∣ρ j − λ(0)j

∣∣ ≤ |r j |2
Gap

(
ρ j , j,H(0)

) , (A14)

but this requires knowledge of the exact gap ofH(0), which is generally unknown. A useful
lower bound on the gap may be computed sometimes from Eq. (A13), and that lower bound
can be used in the RHS of Eq. (A14).

In principle, there is no lower bound on the residual norm magnitude|r j |. Consider, for
example, the special case in whichH(1) andH(0) share the same eigenvectors, but have differ-
ent eigenvalues. As long as the vectors are ordered correctly, then|r j | =0 and convergence
would be achieved in a single iteration, regardless of the magnitude of‖H(1) –H(0)‖.

The accuracy of the vectorv[n]
j is determined byψ = 6 (v[n]

j , v
(0)
j ), and this angle is

bounded by [1]

|r j |
Spread

(
H(0)

) ≤ |Sin(ψ)| ≤ |r j |
Gap

(
ρ j , j,H(0)

) . (A15)

The exactSpreadandGap of H(0) are unknown, but useful upper and lower bounds, re-
spectively, may sometimes be computed and used to bound the exactSin(ψ). In practical
applications, any or all of the above bounds, on the eigenvalues, Eqs. (A13) and (A14),
or the eigenvector error, Eq. (A15), may be used to terminate the iterative diagonalization
procedure.

Substitution of Eq. (A9) into Eq. (A12) results in

r j =
(
H̄[n] −Q[n]

(
H(1) − H(0)

)
Q[n] − ρ j

)
v[n]

j

= (λ[n]
j − ρ j −Q[n]

(
H(1) − H(0)

)
Q[n]

)
v[n]

j . (A16)

Multiplying from the left byv[n]T
j gives(

λ
[n]
j − ρ j

) = v[n]T
j Q[n]

(
H(1) − H(0)

)
Q[n]v[n]

j (A17)

= Sin2
(
ψ [n]

)
x[n+1]T

j

(
H(1) − H(0)

)
x[n+1]

j (A18)∣∣λ[n]
j − ρ j

∣∣ ≤ Sin2
(
ψ [n]

) · ∥∥H(1) − H(0)
∥∥. (A19)

The bound in Eq. (A19) follows from Eq. (A18) and the definition of the matrix norm
Eq. (A3) This improves on the general eigenvalue bounds given directly by Eq. (A1).
Substituting Eq. (A17) into Eq. (A16) gives



THE SPAM DIAGONALIZATION METHOD 507

r j = v[n]
j v[n]T

j Q[n]
(
H(1) − H(0)

)
Q[n]v[n]

j −Q[n]
(
H(1) − H(0)

)
Q[n]v[n]

j

= −(1− v[n]
j v[n]T

j

)
Q[n]

(
H(1) − H(0)

)
Q[n]v[n]

j

= −Sin
(
ψ [n]

)(
1− v[n]

j v[n]T
j

)
Q[n]

(
H(1) − H(0)

)
x[n+1]

j (A20)

|r j | =
∣∣Sin

(
ψ [n]

)∣∣ · ∣∣(1− v[n]
j v[n]T

j

)
Q[n]

(
H(1) − H(0)

)
x[n+1]

∣∣. (A21)

This results in the bounds

|r j | ≤
∣∣Sin

(
ψ [n]

)∣∣ · ∥∥H(1) − H(0)
∥∥ (A22)

∣∣Sin
(
ψ
)∣∣ ≤ ∣∣Sin

(
ψ [n]

)∣∣ · ∣∣(1− v[n]
j v[n]T

j

)
Q[n]

(
H(1) − H(0)

)
x[n+1]

∣∣
Gap

(
ρ j , j,H(0)

)
≤ ∣∣Sin

(
ψ [n]

)∣∣ · ∥∥H(1) − H(0)
∥∥

Gap
(
ρ j , j,H(0)

) (A23)

∣∣ρ j − λ(0)j

∣∣ ≤ ∣∣r j

∣∣= ∣∣Sin
(
ψ [n]

)∣∣ · ∣∣(1− v[n]
j v[n]T

j

)
Q[n]

(
H(1) − H(0)

)
x[n+1]

∣∣
≤ ∣∣Sin

(
ψ [n]

)∣∣ · ∥∥H(1) − H(0)
∥∥ (A24)

∣∣ρ j − λ(0)j

∣∣ ≤ Sin2
(
ψ [n]

) · ∣∣(1− v[n]
j v[n]T

j

)
Q[n]

(
H(1) − H(0)

)
x[n+1]

∣∣2
Gap

(
ρ j , j,H(0)

) (A25)

≤ Sin2
(
ψ [n]

) · ∥∥H(1) − H(0)
∥∥2

Gap
(
ρ j , j,H(0)

) . (A26)

On the first SPAM iteration, when the first vector is being computed to form the sub-
spaceX[1], Sin(ψ)= 1 and Eq. (A22) shows that the residual norm|r j | is bounded from
above by the matrix difference norm‖H(1) − H(0)‖. Similarly, the bound on the error angle
Sin(ψ) reduces to that given in Eq. (A2), and the eigenvalue error reduces to that given in
Eqs. (A1) and (A14). It is only as vectors are added to the subspaceX[n] that the bounds
improve. All of the bounds in Eqs. (A22)–(A26) improve upon the general bounds because
theSin(ψ [n]) coefficient (which is a computable quantity) decreases toward zero as the pro-
cedure converges. Equation (A23) shows also thatSin(ψ), the exact error in the eigenvector,
andSin(ψ [n]) are of the same order, and both decrease together as convergence is achieved.

The accuracy from one SPAM iteration to the next is now examined. The eigenvector
v[n]

j of H̄[n] is decomposed according to Eq. (A11), and the vectorx[n+ 1] is appended to the
X[n] basis vectors to give the new projectors:

P[n+1] = X[n+1]
(
X[n+1]

)T =P[n] + x[n+1]
(
x[n+1]

)T
(A27)

Q[n+1] = Q[n] − x[n+1]
(
x[n+1]

)T
. (A28)

The next SPAM is then given by

H̄[n+1] = H(0)+Q[n+1]
(
H(1) − H(0)

)
Q[n+1] (A29)

= H̄[n] + (H̄[n+1] − H̄[n]
)

(A30)

= H̄[n] + (Q[n+1]
(
H(1) − H(0)

)
Q[n+1] −Q[n]

(
H(1) − H(0)

)
Q[n]

)
(A31)

= H̄[n] +∆, (A32)
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with the obvious definition of the matrix∆. The scalar expansion parameterβ may be
introduced in the [n+ 1] eigenvalue equation as

H̄[n+1]= H̄[n] +β∆, (A33)

and the eigenvector (with intermediate normalization) and eigenvalue may be expanded in
powers of this parameter as

0 = (H̄[n+1] − λ[n+1]
j

)
v[n+1]

j (A34)

= ((H̄[n] +β∆
)− (λ{0}j +βλ{1}j +β2λ

{2}
j + · · ·

))(
v{0}j +βv{1}j +β2v{2}j + · · ·

)
. (A35)

For notational simplicity, the [n+ 1] superscript has been dropped in Eq. (A35). In the usual
perturbation theory approach, it is the solution of the eigenvalue equation atβ = 1 that is
of interest, but only the low-order terms are kept to define various approximations to the
desired eigenvalueλ[n+1]

j and eigenvectorv[n+1]
j . Collecting the zeroth order terms together,

the first-order terms together, and the second-order terms together gives

0 = (H̄[n] − λ[n+1]{0}
j

)
v[n+1]{0}

j (A36)

0 = (H̄[n] − λ[n+1]{0}
j

)
v[n+1]{1}

j + (∆− λ[n+1]{1}
j

)
v[n+1]{0}

j (A37)

0 = (H̄[n] − λ[n+1]{0}
j

)
v[n+1]{2}

j + (∆− λ[n+1]{1}
j

)
v[n+1]{1}

j + λ[n+1]{2}
j v[n+1]{0}

j . (A38)

Equation (A36) means thatλ[n+1]{0}
j = λ[n]

j and v[n+1]{0}
j = v[n]

j , the eigenpair from the
previous SPAMH̄[n] . Making these substitutions, multiplying Eq. (A37) from the left by
v[n]T

j , and noting thatQ[n+1]v[n]
j = 0, gives the first-order contribution and corresponding

bound to the eigenvalue

λ
[n+1]{1}
j = v[n]T

j ∆v[n]
j = v[n]T

j Q[n]
(
H(1) − H(0)

)
Q[n]v[n]

j =
(
ρ j − λ[n]

j

)
(A39)∣∣λ[n+1]{1}

j

∣∣ ≤ Sin2
(
ψ [n]

) · ∥∥H(1) − H(0)
∥∥. (A40)

The first-order contribution to the eigenvector is

v[n+1]{1}
j =−(H̄[n] − λ[n]

j

)−1∗(∆− λ[n+1]{1}
j

)
v[n]

j , (A41)

in which the pseudoinverse (denoted as−1∗) operates only within the subspace orthogonal
to v[n]

j . Substitution of the matrix∆ from Eq. (A31) results in

v[n+1]{1}
j = Sin

(
ψ [n]

)(
H̄[n] − λ[n]

j

)−1∗
Q[n]

(
H(1) − H(0)

)
x[n+1] (A42)∣∣v[n+1]{1}

j

∣∣ ≤ ∣∣Sin
(
ψ [n]

)∣∣ · ∥∥(H(1) − H(0)
)∥∥

Gap
(
λ

[n]
j , j, H̄[n]

) . (A43)

Multiplying Eq. (A38) from the left byv[n]T
j , and noting thatQ[n+1]v[n]

j = 0, gives the
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second-order contribution and corresponding bound to the eigenvalue

λ
[n+1]{2}
j = v[n]T

j ∆v[n+1]{1}
j

= −v[n]T
j Q[n]

(
H(1) − H(0)

)
Q[n]

(
H̄[n] − λ[n]

j

)−1∗

×Q[n]
(
H(1) − H(0)

)
Q[n]v[n]

j

= −Sin2
(
ψ [n]

)
x[n+1]T

(
H(1) − H(0)

)
Q[n]

× (H̄[n] − λ[n]
j

)−1∗
Q[n]

(
H(1) − H(0)

)
x[n+1]T (A44)

∣∣λ[n+1]{2}
j

∣∣ ≤ Sin2
(
ψ [n]

) · ∥∥(H(1) − H(0)
)∥∥2

Gap
(
λ

[n]
j , j, H̄[n]

) . (A45)

Alternatively, Eq. (A9) may be used to define a perturbation theory for the eigenpair of
the exact matrix. The scalar expansion parameterβ may be introduced as

H(0)= H̄[n] − βQ[n]
(
H(1) − H(0)

)
Q[n] . (A46)

Expanding the eigenvector and eigenvalue ofH(0) in powers ofβ and collecting the zeroth
order terms

0= (H̄[n] − λ(0){0}j

)
v{0}j . (A47)

This means thatλ(0){0}j = λ[n+1]{0}
j = λ[n]

j andv(0){0}j = v[n+1]{0}
j = v[n]

j . Collecting the first-
order terms inβ gives

λ
(0){1}
j = λ

[n+1]{1}
j = (ρ j − λ[n]

j

)
(A48)

v(0){1}j = v[n+1]{1}
j =Sin

(
ψ [n]

)(
H̄[n] − λ[n]

j

)−1∗
Q[n]

(
H(1) − H(0)

)
x[n+1]. (A49)

Collecting the second-order terms inβ gives

λ
(0){2}
j = λ[n+1]{2}

j . (A50)

It may be verified that the second- and higher-order terms in the eigenvector corrections,
and the third- and higher-order terms in the eigenvalue corrections, are different in these
two perturbation expansions. However, through first-order for the eigenvector and through
second-order for the eigenvalue, Eqs. (A47)–(A50) demonstrate that the low-order correc-
tions to the SPAMH[n+1] and to the exact matrixH(0) are identical. That is, these equations
show that the sameSin(ψ [n]) factor appears in the low-order corrections to the eigenvectors
and eigenvalues of̄H[n] and H(0). This is the basis of the improved efficiency with the
SPAM method. The effort required to solve thēH[n] eigensolution involves only matrix–
vector products with theH(1) matrix. Once found, a correction of approximately the same
accuracy is incorporated (with the effort of only a singleH(0) matrix–vector product) into
the desired eigenpair. The factorSin(ψ [n]) is a computable quantity, and it converges toward
zero as the procedure converges toward the selected eigenpair.
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APPENDIX B: GENERATION OF NEW EXPANSION VECTORS

There are several ways of generating expansion vectors that have been considered in
the past with the Davidson diagonalization method. These are discussed briefly here and
compared to the SPAM method. These correction vectors may be derived from perturbation
theory, relaxation, minimization of the residual norm, stablization of the Rayleigh quotient,
or, in a heuristic manner, by approximation [3, 4]. The latter approach is taken here. This
facilitates comparisons, but it provides a rather narrow view of each of the methods; the
reader should consult the original references for additional details. For a matrixH, the
desired eigenvector and eigenvalue satisfy the equation

(H − λ)v= 0. (B1)

The exact eigenvectorv may be written as a sum of a unit trial vectorx and an orthogonal
correction vectorδ, asv= x+ δ. Furthermore, the eigenvalue may be written asλ= (ρ+ ε)
whereρ= xTHx is the Rayleigh quotient. For this decomposition to be useful6 (v, x) should
be small,|δ| should be small, andε should be small. For practical reasons, it will be useful
to introduce an approximate matrixD. This allows the eigenvalue equation to be written in
the various forms

(H − ρ − ε)δ = −(H − ρ − ε)x (B2)

= −r + εx (B3)

(D− ρ+ (H − D− ε))δ = −r + εx. (B4)

Note that the matrix (H − λ) is singular, so this expression is a statement about how the exact
vectorv is annihilated from the RHS of the Eqs. (B2)–(B4). All of the methods discussed
in this appendix will be expressed as approximations to these exact equations.

The original Davidson [2–4] method follows from two separate approximations. The first
is that the terms (H − D− ε) are deleted from the LHS, and theε term is deleted from the
RHS of Eq. (B4). This results in the equation

(D− ρ)δD =−r . (B5)

The second approximation in the Davidson method is thatD is usually taken to be a diagonal
matrix. Other choices have been used also [3–6], but the diagonal approximation makes the
linear equation in Eq. (B5) trivial, and it is the most common choice. The residual vector
r is proportional to the gradient of the Rayleigh quotient with respect to variations in the
trial vectorx, and consequentlyδD from Eq. (B5) may be regarded as a preconditioned
gradient. This has been discussed by van Lenthe and Pulay [24] and by Davidsonet al.[25].
The correction vectorδD from Eq. (B5) is not orthogonal tox. This traditional Davidson
method is denoted the diagonal-preconditioned-residual (DPR) method and is used as the
reference for comparisons in this work.

Many methods are based on Rayleigh quotient inverse iteration (RQII). This is usually
regarded as a single-vector method in which the trial vector is replaced, during each iteration,
with the solution of the linear equation

(H − ρ)xnew= x. (B6)

This method displays asymptotic cubic convergence [1], which means that, when the refer-
ence vectorx is sufficiently close, the error in the eigenvector of each iteration is proportional
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to the cube of the error of the previous iteration. Of course, this cubic convergence cannot be
exploited practically for matrices of large dimension (except for special or simple forms of
the matrixH) because of the need for the linear equation solution. For a subspace method,
it is not the new vector that is of interest, it is the component of the new vector that is or-
thogonal to the previous vector that is of primary importance. Writingxnew= (x+ δRQII)/ε

and rearranging the expression [26] gives

(H − ρ)δRQII=−r + εx. (B7)

This shows that the subspace expansion vector generated from RQII is the approximation
to the exact equation that results from deleting theε term from the LHS of Eq. (B3). The
scalarε may be determined by operating on the left byxT (H − ρ1)−1. This gives

ε= 1

xT (H − ρ1)−1x
. (B8)

This suggests that two linear equation solutions are required during each RQII iteration
when the vectorδRQII is computed, one to determineε, which then allows the RHS of
Eq. (B7) to be evaluated, and the other linear equation solution to determineδRQII. Sleijpen
et al.[27, 28] and van Damet al.[29] suggest two alternatives in their Generalized Jacobi–
Davidson (GJD) method. Operating on the left of Eq. (B7) by the projector(1− xxT ) gives
the equation

(1− xxT )(H − ρ)δGJD=−r . (B9)

This eliminates the parameterε from appearing explicitly in the solution of the linear
equation forδGJD. During the solution of this linear equation, care should be taken to
ensure that the matrix operates only in the subspace that is complementary tox. OnceδGJD

has been determined,ε may be computed, if desired, asε= r TδGJD. Sleijpenet al. also
suggest that the inverse iteration equation for the expansion vector may be solved in the
augmented form (

H − ρ −x

−xT 0

)(
δGJD

ε

)
=
(

r
0

)
, (B10)

in which both unknowns,ε andδGJD, are determined together. Equations (B9) and (B10)
both show that the vectorδGJDmay be solved with a single linear equation. Sleijpenet al.[27]
proposed that iterative solutions of the linear equations should be terminated early during
the initial iterations in order to improve efficiency, and van Damet al. [29] suggested the
use of block-diagonal approximations toH.

Olsenet al.[26] have proposed the inverse-iteration generalized davidson (IIGD) method.
The terms (H –D –ε) are deleted from the LHS of Eq. (B4), resulting in the linear
equation

(D− ρ)δIIGD =−r + εx. (B11)

This is equivalent to replacingH by D in the preconditioner in the RQII equation (B7).
The scalarε is determined by operating on Eq. (B11) from the left byxT (D− ρ1)−1 and
enforcing the orthogonality relationxTδIIGD = 0:

ε= r T (D− ρ1)−1x
xT (D− ρ1)−1x

. (B12)



512 SHEPARD ET AL.

In principle, the correction vector and parameterε could also be determined using Eqs. (B9)
and (B10), but for a diagonalD, there is little practical advantage. Olsenet al. [26] pointed
out that in the limitD→ H, the DPR correctionδD becomes exactly linearly dependent with
the current trial vectorx (which means it makes no progress toward convergence), whereas
the IIGD stepδIIGD becomes equivalent to Rayleigh quotient inverse iteration (compare to
Eq. (B7)), which not only converges, but converges cubically.

The other popular subspace generation approximation consists of deleting theε term
from the RHS of Eq. (B3) and approximating the entire (H –λ) matrix as a unit matrix (or
a scalar multiple thereof). This results in the Lanczos expansion vector

δL =−r . (B13)

This requires the least amount of effort of any of the methods discussed in this appendix
to generate the expansion vector, but it suffers from the slowest convergence properties.
Becauser is proportional to the gradient of the Rayleigh quotient, the Lanczos method may
be considered a gradient search method. The slow convergence is because the sequence
of expansion vectors corresponds to an orthogonalized Krylov sequence, which does not
selectively converge to the desired eigenpair of interest. Its main advantage is the fact that
the subspace matrix〈H〉[n] generated by this sequence of vectors is tridiagonal, which means
that not only is the subspace eigenvalue equation relatively easy to solve, but also only the
two most recent vectors must be saved. In contrast, all of the other preconditioned expansion
vector methods discussed in this appendix result in a dense subspace matrix and require the
storage of bothX[n] andW[n] . It is easily verified thatX[n]T r = 0, which means thatδL is
orthogonal not only to the reference vectorx but also to the entire expansion spaceX[n] .

The SPAM method may now be compared to these other expansion vector methods. In
general, the SPAM equation (A10) may be rewritten using the splitting of the matrix, the
eigenvalue, and the eigenvector given above. In particular, letH(1)=D, x=X[n]c[n], λ[n] =
(ρ − ε), andδSPAM=Sin(ψ [n])x[n+1] from Eq. (A11):(

H̄[n] − λ[n]
)
v[n] = (H+Q[n](D− H)Q[n] − ρ − ε)(x+ δSPAM)= 0. (B14)

Rearranging into the form of Eq. (B3) and noting thatQ[n]x= 0, this equation may be
rewritten as (

H −Q[n](D− H)Q[n] − ρ − ε)δSPAM=−r + εx. (B15)

It is clear that in the limitD→ H, the SPAM expansion vector approaches the exact
correction vector, and convergence would be achieved in a single SPAM iteration. This
is in contrast to all of the other expansion vector methods discussed in this appendix
(δD, δRQII, δGJD, δIIGD, δL ), none of which converge in a single iteration in this limit. This
has some formal appeal in favor of SPAM regarding the potential accuracy, but it has little
practical value in most situations becauseD is usually too coarse of an approximation toH
for this formal difference to be significant. On the other hand, because SPAM requires the
iterative solution of this eigenvalue equation, it would generally be expected to require more
effort than either IIGD or the DPR methods. It also should be mentioned that in the limit
D→ H, the RQII expansion vector, the GJD expansion vector, and the IIGD expansion
vector are all the same—they are all slightly different implementations of RQII.
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In the other limit, with a diagonalD approximating the matrixH, the GJD and the IIGD
expansion vector are still equivalent—they are slightly different implementations of the
same approximate inverse iteration. Both of these expansion vectors are orthogonal, by
design and by construction, to the reference vectorx, in contrast to the DPR update vector,
which is not orthogonal and must be explicitly orthogonalized before being added to the
expansion vector subspace. Multiplying Eq. (B15) from the left by(D− ρ1)−1 allows the
SPAM expansion vector to be written as(

1+ (D− ρ1)−1
(
(D− H)−Q[n](D− H) Q[n] − ε))δSPAM= δIIGD . (B16)

In the first SPAM iterationQ[0] = 1 and the only difference betweenδSPAM andδIIGD is
the ε term on the LHS of Eq. (B16). On subsequent iterations, there is also the (D –H)
term that contributes. In general, the SPAM expansion vector is different from the IIGD
expansion vector, the DPR expansion vector, and the Lanczos expansion vector. As the
iterations proceed, the SPAM describes the eigenpair of interest more and more accurately.
By contrast, the preconditioner used in the IIGD method, and in the DPR method, remain
fixed in form and varies only because ofρ.

In addition to the differences in the form of Eq. (B16), another significant difference is in
the definition of the reference vectorx. In all of the other methods,x is taken to be the current
approximate eigenvector within the subspaceX[n] . But in the SPAM method, it is defined as
x=X[n]c[n] , wherec is the set of coefficients of the level-0 vectors from the diagonalization
within the [n0, n1] subspace. In the other methods described above, the expansion vector
coefficients are “frozen” as the new expansion vector is computed, whereas in the SPAM
method, these coefficients are “relaxed” to their optimal value as the new expansion vector
is computed. The last significant difference is that the update vector is orthogonal to the
reference vectorx in the GJD and IIGD methods, whereas theδSPAMupdate vector, like the
Lanczos expansion vectorδL , is orthogonal to the entireX[n] subspace.
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