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A modification of the iterative matrix diagonalization method of Davidson is pre-
sented that is applicable to the symmetric eigenvalue problem. This method is based
on subspace projections of a sequence of one or more approximate matrices. The
purpose of these approximate matrices is to improve the efficiency of the solution of
the desired eigenpairs by reducing the number of matrix—vector products that must
be computed with the exact matrix. Several applications are presented. These are
chosen to show the range of applicability of the method, the convergence behavior
for a wide range of matrix types, and also the wide range of approaches that may be
employed to generate approximate matrices 2001 Academic Press
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1. INTRODUCTION

The symmetric eigenvalue problem
(H—2j)vj=0 (1.1)

is familiar in many application areas[1]. In some of these, the computation of the entire s
trum of eigenvalues and associated eigenvectors is necessary, and in others, only sel
eigenpairs are desired. In the former case, particularly with dense unstructured matri
the overall computational effort scales@gN?®) whereN is the dimension of the matrix;
these are calledirect or densemethods. When only a few vectors are required, they ma
sometimes be determined usiitgrativemethods, and the overall effort may be much less
particularly if some structure of the matrix (e.g., banded, blocked, sparse, outer-prodi
tensor-product, and so forth) may be exploited. The largest eigenvalue problems corresj
to N as large as or 1(; for these situations, dense methods cannot even be consider
and iterative methods are the only practical choice.
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The method that will be described in this work is a modification of the Davidson iterati
method [2—6]. The Davidson method has the following features, all of which are shared
the method described in this work.

1. Only matrix—vector products (or linear transformations) of the matrix with arbitrar
trial vectors are needed. For structured or sparse matrices, this allows the produc
be computed efficiently, with less computational effort, fewer floating point operatior
and/or less I/0 than the usual matrix—vector product. The matrix is not modified duri
the procedure, so sparse fill-in does not occur. Furthermore, it is not necessary to actt
compute and store the matrix elements explicitly. There are many examples of applicat
for which it is more efficient to either recompute the elements “on-the-fly” as needed (eitl
from formal expressions for the individual matrix elements or from underlying simple
compact, data structures) or for which the matrix structure itself may be exploited in so
way in order to compute the matrix—vector products in “operator” form. A few example
of this are discussed in detail below.

2. The Davidson method is subspacenethod. As a trial vector is added to the sub-
space during the iterative procedure, the new computed approximate eigenvalues fromn
subspace (called tHeitzvalues) bracket those of the previous iteration. This is particularl
beneficial when computing the lowest roots because the intermediate computed eigenv:
are always upper bounds to the final converged lowest eigenvalues. Similarly, the hig
roots of an intermediate subspace representation are lower bounds to the final conve
highest eigenvalues.

3. The Davidson method can be used to find the lowest eigenpair, several of the lov
eigenpairs, the highest eigenpair, several of the highest eigenpairs, or selected int
eigenpairs.

4. A benefit of a subspace method is that convergence is generally more robust tha
a single-vector (or update) method. In general, given any single-vector iterative mett
a corresponding subspace method may be devised, and this subspace method will al
converge better than the original single-vector method. In fact, the subspace method
sometimes converge rapidly even when the single-vector method upon which it is ba
oscillates, diverges, exhibits false convergence, or otherwise converges problematic
However, the subspace method typically requires more resources (memory, disk space
so forth) than the corresponding single-vector method, and the manipulation of the mult
vectors is computationally more demanding than for the single-vector method. (These ¢
ments regarding convergence may not apply necessariigdaential relaxatiori7], also
calledcontinuous updatesingle-vector methods. Each iteration of such a method consis
of N individual updates, usually applied in sequential order to the elements of the trial eig
vector. A subspace analog of these types of single-vector methods is impractical bec
the subspace dimension would grow too large. Although these methods can converge
ciently, particularly for isolated eigenpairs, the sequential update process requires ord
access to the matrix elements, and this limits the range of applicability of these metho

5. Itis possible for the Davidson method to converge to the wrong root, or, when seve
roots are requested, to “skip” over roots and converge to nearby roots instead. This pl
some importance on the choice of initial vectors.

One disadvantage of the Davidson method is that it can be slowly convergent for sc
matrices. These include matrices that are not diagonally dominant. Slower converge
means that more matrix—vector products are required, resulting in greater computatit



474 SHEPARD ET AL.

effort. This is particularly problematic for matrices of very large dimension for which eac
matrix—vector product requires a major computational effort. It is primarily this situatic
that is addressed by the method described in this work.

2. THE SPAM METHOD

The original Davidson Method is outlined in Fig. 1. During the iterative procedure, a s
of expansion vectorfx;; j =1, n} is available. These vectors may be collected together t
form the columns of a matriX[", where the superscript denotes the number of vector:
The details of the methods used to generate the new expansion vectors are discuss
Appendix B. There are also the corresponding matrix—vector protutis= HX " that
are stored. The representationtbfvithin this subspace is given by

(HYI = XIOIT 0] — Il T Il (2.1)
in which the superscripf denotes the transpose. A projection matrix may be defined as
plnl — x[nl (x[n]TX{ﬂ])_lx[“]T_ (2.2)

The method described here may be implemented in terms of general nonorthogonal
pansion vectors. However, for simplicity, it will be assumed hereafter that the expans
vectors are chosen to satisfy the relatig! ™ X[") = 1. This allows the projection matrix
to be written simply a® = XM XMT There is also the orthogonal projector defined a:
QM = (1 — PI"). These projectors result in the identity
H = (P + QM)H (P + QM) (2.3)
= plily pinl 4 plnly Q[n] + Q[n]H plnl Q[n] H Q[ﬂ] (2.4)
— (x[n] (H>[n])([n]T + XNy T Q[n] + Q[nlw[n])([n]T) + Q[n]HQ[ﬂ]_ (2.5)

Outline of the Davidson Method

Generate an initial vector x,
MAINLOOP: DO n =1
Compute and save w,=Hx,
Compute the n-th row and column of (H): (H),,,,=w,” X"
Compute the subspace eigenvector and value: (H) - p)e =0
Compute the residual: r=W,.c,., — 0 X,..¢,..
Check for convergence using |1}, ¢, p, etc.
IF (converged) THEN
EXIT MAINLOOP
ELSE
Generate a new expansion vector x,,,; fromr, p, v=Xg, etc.
ENDIF
ENDDO MAINLOOP

FIG. 1. Outline of the Davidson method.
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An arbitrary matrix—vector produddy may therefore be computed as four separat
contributions, the first three of which involve only operations with the subspace vect
X andW.

The crucial idea of the method described here is that an approximate rrttiis
available, that matrix—vector produdt?y require less effort to compute than the exact
productsHy, and that these approximate matrix—vector products are used to reduce
overall computational effort. This reduced effort could be bec#i$eis less dense than
H, or becaus¢i is generated from some formal or algebraic approximatiod (@.g.,
simpler basis, a smaller basis, a lower-order approximation, an outer-product approxi
tion, a tensor-product approximation, a coarser computational grid, and so on). With
approximate matrix available, a subspace projected approximate matrix (SREM}
defined:

HIN = plnly plnl 4 plnly Q[n] + Q[n] HpM 4+ Q[n]H(l)Q[n] (2.6)
— (X[ﬂ] <H>[ﬂlx[n]T + X[n]V\/[n]TQ[n] + Q[n]W[ﬂlx[n]T) + Q[H]H(l)Q[n]_ (2.7

Note that the first three terms in Egs. (2.6) and (2.7) are “exact” when compared to Egs. (
and (2.5). Itis only the last term that is affected by the approximation. For a given subsp
of dimension p], the eigenpair from this approximate matrix is computed

(HIM — It —o, (2.8)

This eigenvector is then appended to the subspace (after orthonormalization) ¥/tothm
An exact matrix—vector product is computed to font"+11. This expanded subspace then
defines a new project®"+! and a corresponding new approximate mat%+2l, and the
process is repeated until convergence is achieved. Although the underlying approxir
matrix H® remains the same during this process, the SN changes as the iterations
proceed. Both the eigenvector and the eigenvalue from Eqg. (2.8) are approximations tc
converged results. The accuracy of the approximation is quantified in Appendix A. Howe\
the approximate eigenvalue does not enjoy the upper (or lower, as relevant) bound proy
that holds for the subspace eigenvalue computed from the exact matrix—vector prod
only.

When a vectoy is a member ofx;; j =1, n}, or if itis a general linear combination of
these vectorsy = X[, then Eq. (2.6) results in the relation

HMy =Hy: wheny e Spar(x!™). (2.9)

It is only vectorsy orthogonal toX[", or that contain orthogonal components, that are
approximated byH[My relative to the exact matrix—vector produdy. As the procedure
converges to the eigenpair of interest, the subsp#teontains the eigenvector. When this
occurs, the converged eigenpairtdf! is also an eigenpair of the exadt

This leads to the question of how to solve the eigenvector equation of Eq. (2.8). I
the same dimension as the original equation, so it is appropriate that an iterative mef
should be used. In the current work, the iterative Davidson method outlined in Fig. 1 is us
Equation (2.9) suggests that an initial subspace consisting"bicould be used for this
iterative solution. Because the exact matrix—vector proditsare already available, the
firstn x n subblock of the subspace matiid(");., 1., has already been computed and is
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available. Furthermore, all of the new expansion vectors that are added during the itere
eigensolution can be chosen to be orthogona!fb. In this case, a matrix—vector product
takes the simple form

Hx, = XMIwTy, 4 QIMH®x, (2.10)
= w4 XP(WTy — XITW®), (2.11)
wherew® =H®x, is the inexpensive matrix—vector product. Furthermore, as a rest

of Eq. (2.9), a subspace matrix element between a vectwithin X" and a vectox
orthogonal tox[ is exact:

xTHMy =yTHITx, =xTHy; y e Span(X!™), X, =0, (2.12)
It is only matrix elements in the diagonal subblock(bf") between two vectors in the
orthogonal space that are not exact relative to the mé#jxn the same vector subspace.

This suggests the SPAM implementation in Fig. 2. This is basically the same as
original Davidson method, except that a flagype is toggled between 0 and 1 to denote

Outline of the SPAM Method

Generate an initial vector X,
Set wrype,=1 ! Start the iterations with approximate products
Set n=0; n=1
MAINLOOP: DO
Compute and save w,= H(wtype,, ny) X,
Compute the n-th row and column of (H): (H},,,, = w,” X"
Compute the subspace eigenvector and value: ((H) - p)e =0
Compute the residual: r=W.¢,..— 0X,..C...
Check for convergence using [r|, ¢, p, etc.
IF (converged .AND. wtype, EQ.0) then
EXIT MAINLOOP ! Final convergence is achieved
ELSEIF (converged .AND. wtype,#0) then

Contract x g+l < X(no +1):nc(n0 +1):n / c(no +1):n

Set nye—ny+1; n=n,
Set wrype,=0 ! The next product will be exact
ELSE
Set ne—n+1
Generate a new expansion vector x,, from r, p, v=Xc, etc.

Set wiype,=1 ! The next product will be approximate
ENDIF
ENDDO MAINLOOP

FIG. 2. Outline of the SPAM method.
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the type of matrix—vector product for each expansion vector. Furthermore, the converge
criteria are slightly more complicated. Basically, there are two kinds of convergence. Wi
convergence is achieved witttypeg, = 0, then all of the matrix—vector products have beer
computed with the exact matrki, and the desired eigenpair has been found. When col
vergence is achieved withtypg, = 1, this means that the current SPAM eigensolution o
Eqg. (2.8) has been found. At this time, the new expansion vectorsi{tiiectors corre-
sponding to thevtypg = 1 vectors) are contracted using the coefficiaftem the current
subspace eigenvector, this vector is saved in tge-[1] position inX, andwtypeis then
set to 0 for that vector to ensure that the next matrix—vector product will be compu
exactly.

One way to view the overall SPAM iterative procedure is to monitor the subspace dim
sion and to note the number of exact (withypg = 0) products computed and the number
of approximate (withwtypg = 1) vectors. In the following discussion, such a mixed sub
space will be denotedj, n;]. As outlined above, the number of exact produggsn the
subspace never decreases during the iterative procedure, but the number of approx
productsn; is an irregular sawtooth function during the iterative procedure. The number
approximate products increases for a few iterations, then upon intermediate convergen
Eq. (2.8), the count, is reset to zero, and it then begins to increase again from that poi
Examples of this convergence behavior are given below.

3. THE MULTILEVEL SPAM METHOD

During the SPAM iterative method, the iterative solution to the eigenvector equati
(Eq. (2.8)) is required. Matrix—vector products with the approximate matf are as-
sumed to require less effort than the exact products involding H©. However, what if
convergence of Eq. (2.8) (for a given projection rang]] is slow and there are many of
theseH® matrix—vector products required, the total cost of which is excessive? The ans\
to this problem is to temporarily treat the matk™! as “exact,” and to apply the SPAM
method to this problem with yet another “approximate” maki®:

Hno.nal — plno.nal inol plno.nil 4 plno.nal |__|[no]Q[no,n1]
+ Qlnonl HInol plno.na] - QoI @ glno.ml (3.1)

In order to reduce the computational effort, matrix—vector productsMithmust require
even less effort than those BfY. The eigenvector solution from the equation

(|__|[no,n1] _ )L[jno’nl]>v[jn0’n1] =0 (3.2)

is converged using the Davidson procedure. At this point, the vector space is denc
[no, N1, N2], which means that there ang vectors for which exact matrix—vector products
with H© are availablen; vectors for whichH"! matrix—vector products using the ap-
proximate matrixd® have been computed, anglvectors for whictH ("] matrix—vector

products using the approximate matk4® have been computed and are available. Upol
convergence of Eqg. (3.2) thad, ny, n2] subspace is contracted in order to define a nev
[no, n1 + 1, 0] subspace, and the process is continued until convergence is achieved. W
convergence is achieved eventually for the sequence of level-1 SPAM approximations,
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current o, n1] =[no, Ny, 0] space is contracted down to formm@ |+ 1] =[ng+ 1, 0, O]
space, as described in Section 2. Analogous to Egs. (2.9) and (2.11), matrix—vector proc
satisfy

Hnenly — Hivly:  wheny e Spar(X[Me:nl) (3.3)

|__|[ﬂo,n1]XJ_ =w®@ 4 xo.nal (W[ﬂo,m]TXl _ X[ﬂo.ﬂl]TW(2)>; Whenx[ﬂo,ﬂﬂTXl =0. (3.4)
These equations suggest a generalization of the SPAM method to an arbitrary nun
of approximation levels based on a modification of the subspace procedure describe

the previous section. The SPAM at a given approximation level, labelganby 1) and

dependent on the current expansion vector subspgcaq|. .. Ny, is defined in terms of
the previousn-level SPAM along with a new approximate matkix™+3:

HIMo.ns..im] _ plno.n,...0m] 1y [N0.N1.....Nim-1] plNo. Ny, ..M} + plno.nz....im] |__|[n0.n1,...nm_1]Q[no,nl,...nm]

+ Q[no,nl,...nm] |__|[no,n1,...nm,1] P[no,nl,...nm] + Q[no.nl....nm]H(m+1)Q[no,n1,...nm]
(3.5)

This procedure is outlined in Fig. 3. In this multilevel SPAM method,ltgpeg variable

Outline of the MultiLevel SPAM Method

Generate an initial vector x,
Set wtype,=MaxSpamlLevel ! Start with approximate products
Set yparpene=0; n=1
MAINLOOP: DO
Compute and save w, = H(wtype,, Ropaiever) Xn
Compute the n-th row and column of (H): (H),,,=w,” X"
Compute the subspace eigenvector and value: (H) — p)c =0
Compute the residual: r=W,,¢,,— pX,..c,.,
Check for convergence using |r|, ¢, p, etc.
IF (converged .AND. wtype,.EQ.0) THEN
EXIT MAINLOOP ! Final convergence is achieved
ELSEIF (converged .AND. wtype,#0) then

! contract wtype, vectors

Contract X « Xp.nCn /Chn

Resetn, n,,,., 1

wiyper ' Fwiype-1

Set wtype,«—wtype,—1 ! one step more accurate
ELSE
Set ne-n+1
Generate a new expansion vector x, fromr, p, v=Xc, etc.
Set weype,= MaxSpamLevel ! most approximate level
ENDIF
ENDDO MAINLOOP

FIG. 3. Outline of the multiLevel SPAM method.
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is set to the approximation level of the corresponding matrix—vector product: O for ex
matrix—vector products, 1 for the first level of approximation, 2 for the second level

approximation, and so forth. When the maximum SPAM level is set to 0, then the multile
SPAM method outlined in Fig. 3 is equivalent to the simple Davidson method outlined
Fig. 1. When the maximum SPAM level is set to 1, then the multilevel SPAM method

Fig. 3 is equivalent to the method outlined in Fig. 2.

This general idea is entirely consistent with the usual approach taken in various ar
cations involving eigenvalue problems. The “exact” problem is too difficult to solve, so
is approximated, in some way, by a model problem that is formally, conceptually, or co
putationally simpler. If this simpler problem is itself too difficult to solve, then yet furthe
approximations are invoked. The SPAM method allows this series of approximations tc
incorporated directly into the numerical solution of the original “exact” eigenproblem.

4. DISCUSSION

The single-level and the general multilevel SPAM methods described above have b
implemented in a standard Fortran 90 subroutine. In this section, the features of this im
mentation are discussed. Several types of test matrices are used in these discussion
several different ways of formulating approximate matrices are demonstrated. Additio
details of the implementation are discussed in the context of these examples.

Banded Matrix Examples: The first examples are based on a banded matrix of th
general form

Hk,k=k; fork=1...N
Hir = AR for|k — 1| < Wandk # | 4.1
Hy1 =0; otherwise

These matrices are characterized by three scalar parameters, the matrix dinherisien
bandwidthW, and A, which determines the diagonal dominance of the matrix. In th
following test calculations, a matrix with a large bandwidth will be approximated by
matrix with a smaller bandwidth. By using recursion, matrix—vector products with th
matrix may be computed witlo(N) floating point operations, independent \Wf. The
SPAM method is not the best approach for this matrix because the exact matrix—ve
products are just as expensive to compute as the approximate ones, but this is an exc
matrix to use as a model for general matrices that display similar convergence characteri
because the degree of diagonal dominance and the accuracy of the successive approx
matrices is easily controlled.

The first column of results in Table | shows the convergence of the regular Davids
iterative method, with a diagonal—preconditioned residual (DPR) expansion vector, for
lowest eigenpair of a matrix characterized By=10,000,W =64, andA =0.75. The
initial vector is ey, the first column of a unit matrix of dimensidd. The dimension is
chosen so that this problem is nontrivial, yet the structure of the matrix results in model
problems that are readily solved. The convergence criterion for this test dase:ig¢0-8
(see Appendix A), which is a typical convergence requirement. For this matrix, the low
eigenvalue); = 0.585510562346823s converged to approximately machine precisior
(~10-1%) with this convergence tolerance, which is consistent with the bound in Eq. (A1-
Twelve iterations, each of which require &1® matrix—vector product, are required to
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TABLE |
Comparison of DPR and SPAM Convergence

SPAM SPAM
DPR Fixed Tolerance Dynamic Tolerance
Iteration [no] Ir] [No, N4] Ir [No, n4] [r|
1 [1] 1.13E+00 [0, 1] 1.13E+00 [0, 1] 1.13E+00
2 [2] 3.23E-01 [0, 2] 3.23E-01 [0, 2] 3.23E-01
3 [3] 1.05E-01 [0, 3] 1.05E-01 [0, 3] 1.05E-01
4 [4] 2.73E-02 [0, 4] 2.73E-02 [0, 4] 2.73E-02
5 [5] 5.41E-03 [0, 5] 5.41E-03 [0, 5] 5.41E-03
6 [6] 8.66E-04 [0, 6] 8.66E-04 [0, 6] 8.66E-04
7 [7] 1.16E-04 [0, 7] 1.16E-04 [0, 7] 1.16E-04
8 [8] 1.35E-05 [0, 8] 1.35E-05 [1, 0] 1.40E-04
9 [9] 1.37E-06 [0, 9] 1.37E-06 [1, 1] 2.11E-05
10 [10] 1.24E-07 [0, 10] 1.24E-07 [1,2] 2.78E-06
11 [11] 1.02E-08 [0, 11] 1.02E-08 [1,3] 3.47E-07
12 [12] 7.59E-10 [0, 12] 7.59E-10 [1, 4] 7.97E-08
13 [, 0] 7.12E-05 [1,5] 2.13E-08
14 [1, 1] 4.34E-06 [1, 6] 7.30E-09
15 [1, 2] 2.06E-07 [2,0] 7.35E-09
16 [1, 3] 1.69E-08
17 [1, 4] 6.30E-09
18 [2,0] 6.28E-09
Nproducl [12] [2! 16] [2! 13]

Note Convergence trajectories of the lowest root of the banded test matrixN£1.0,000, Wy = 64,
andA = 0.75. For the SPAM calculation®y; = 32. The convergence criterion|ig < 1078,

achieve convergence with the traditional Davidson DPR method. This convergence ral
typical of many eigenproblems that occur in various applications. The largest off-diago
element in this matrix is 0.75, and the smallest nonzero off-diagonal eleme@isl 08,

An approximate matriH® with half the bandwidth oH© is characterized byN =
10,000,W =32, andA =0.75, and a single-level SPAM is applied. As seen in Table |
only two H© matrix—vector products are required along with 16 approxirhétematrix—
vector products. The total number of iterations has increased, but almost all of them
with the approximate matrikl® rather than the exact matrit© . The smallest nonzero
off-diagonal element irH® is 1.00- 10~*. The largest element in the difference matrix
(H® — HO) has the magnitude.5- 10-°. If the HY products were 10 times cheaper to
compute than thel @ products (an effort ratio of/1L0) for an actual application with similar
convergence properties, then already the SPAM method would have resulted in an ove
savings of 12: (2+ 1.6), or an overall 70% reduction of effort.

Inspection of the convergence trajectory of the SPAM calculation in Table | sugge
that too many level-1 iterations are performed during the generation of the [1, 0] subsp:
Basically, no matter how well the [@,] iterations are converged, the residual of the [1, O]
iteration (immediately after contraction of thevectors) will have a vector norm of at least
~1-10"* This suggests that instead of the final residual norm convergence toleranci
dynamic adjustment of the intermediate residual norms would result inimproved efficien
The accuracy of residual norms is quantified in Appendix A. Equation (A22) suggests t
the convergence of the!® matrix during this first SPAM iteration needs to be convergec
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to atleast|H® — HO||. Two estimates of this matrix norm were considered, one based
the Gerschgorin disk bound [8], and the other based on the eigenvalue bound in Eq. (£
along with a coordinate unit vector. The expression in Eq. (A13) was found empirically bc
to be smaller in magnitude and to result in the more accurate residual norm estimate,
avalue of 161- 10~ for this particular matrix. Because this estimate is based on a bour
and is not necessarily an accurate estimate of either the matrix difference norm or of
residual vector of the [1,0] iteration, an additional scale factar f0.95 is used, and the

first SPAM iteration is converged to| < 1.54.10-. This may be regarded as a prediction,
before contraction, of the actual [1, 0] residual norm after contraction. If this scale fac
« is chosen to be too small, then a few extra approxiniife matrix—vector products

may be computed. However, if the scale factor is too generous, and the first sequenc
SPAM iterations is not sufficiently converged, then the penalty is that too many expens
H© matrix—vector products may be computed. Because the penalty for overconverg
the approximate SPAM sequence is less than the penalty for underconverging the SF
sequence, itis better generally to err on the side of caution than to err on the side of optim
Inthe general case,if=ng + n; is the number of expansion vectors during aniteration, the

\Si”(¢[”°])| = |C<no+1):n‘ =4/ C(Tno+1>:nc(no+1):n- 4.2)

This value involves only the expansion coefficients of the basis vectors in;tiseb-
space. The iterative solution of the SPAM eigenpair is terminated when the residual n
satisfies

[rimend| < o[Sin(y M) |- [[H® — HO||. (4.3)

Comparing the residual norms for the [0, 7] and the [1, O] iterations in Table |, itis seen th:
choice ofx = 0.95, along with the above estimate|d® — H©||, is sufficiently accurate
for this particular matrix. The final result of adjusting the convergence dynamically duril
the SPAM iterative process according to Eq. (4.3) for this test case is that two exact mat
vector products are required and 13 approxintfe matrix—vector products are required
to achieve convergence. That is, three approximate matrix—vector products were skif
compared to the previous fixed-tolerance convergence trajectory. For a matrix—vector p
uct effort ratio of /10, the overall effort, compared to the reference DPR expansion vec
procedure, would be 12 : (2 1.3), or an overall 73% reduction in effort.

The convergence characteristics for several SPAM calculations are shown in Table
Each row corresponds to a different choice of approximate mitfix For each approx-
imate H®, the matrix difference normiH® — H©| is estimated from Eq. (A13), and
this estimate is used to dynamically adjust the intermediate convergence tolerances a
scribed above. In all cases, a choiceref 0.95 was used. For each convergence trajecton
the maximum subspace dimensiofax that is required to achieve convergence is listed
along with the total number of matrix—vector products for each of the two matités,
andH®. Two separate final convergence tolerances are imposed on the computed res
norms, a looser value of 1@ and a tighter value of 1&. These span the range of “typical”
convergence criteria for various applications. Both the maximum subspace dimension
the total number of products can be important in determining the overall efficiency of a c
culation, and even whether the calculation fits within the memory or disk space limitatio
A more detailed effort model is discussed below. Comparing the two sets of calculations
the two residual norm tolerances shows that smaller valueggfand fewer matrix—vector
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TABLE Il
Comparison of SPAM convergence

Ir| <108 Ir| <10°®

[W] ”H(l) - H(O) H Nmax Nproduct Nmax Nproduct
[64, 64] 0.0 9 11, 9] 12 11, 12]
[64, 56] 1608.10°7 9 [1,9] 10 [2,12]
[64, 48] 1614-10°° 9 [1, 9] 9 [2,12]
[64, 40] 1612-10° 8 [2,9] 8 [2,12]
[64, 32] 1611.10°* 7 [2,9] 8 [2,12]
[64, 24] 1609102 6 [2,9] 7 [3, 15]
[64, 16] 1602.10°2 6 13, 11] 7 [4, 16]
[64, 8] 160510 6 [4, 12] 7 [6, 17]
[64, 1] 1203-10° 9 [9, 9] 12 [12, 12]
[64, 0] 1604 10° 9 [9, 9] 12 [12,12]

Note Convergence of the lowest root of the banded test matrix Wita 10,000 and
A =0.75. The||H® — H?| values are estimated from the residual norm bound. The inter-
mediate convergence tolerance is adjusted dynamically.

products are required for the looser convergence criteria. This is consistent with the ¢
vergence of the usual Davidson DPR method. The other general trend is that the bette
H® approximation, the fewer exaet® products are required. In particular, thg = 64,

W; =56 andW; =48 calculations demonstrate that convergence can be achieved wit
single exact matrix—vector product in the most favorable situations. Convergence is alw
achieved with a single “exact” matrix—vector product witfh = Wy, and this is demon-
strated in the first row in Table II; this has no practical consequence, but it demonstre
that the implementation satisfies this formal boundary condition in the Hit— H©.

The last two rows of Table II, witlw; =1 and withW; =0 should also be mentioned.
TheW; = 1 row uses a tridiagon&® matrix. For this test case, because of the dynamice
adjustment of the intermediate convergence, each DPR expansion vector generate:
HI™! is “contracted” immediately and used to form an exdt? matrix—vector product.
The result is that there is an equal numbeH&P andH® products for both convergence
tolerances, and thd© convergence trajectory is identical to the DPR trajectory. The las
row, with Wy =0, employs a diagonad®. The convergence trajectory of this row is also
equivalent to the DPR trajectory. This is examined in more detail below. It is somewt
disappointing that a tridiagon&l¥ does not perform significantly better than a diagona
H®:; linear equation solutions with a tridiagonal matrix require only slightly more effort tha
those with a diagonal matrix, and combined with the IGD/GJD method (see Appendix
this would have been a good alternative way to generate improved expansion vectors:
minimal additional effort.

Table 11l shows the convergence trajectory for level-2 and level-3 SPAM convergen
with the samaVN = 32 H® matrix described above, along withd=16H® and aw =8
H® matrix. The dynamical adjustment of the intermediate convergence tolerance u
previously is generalized to the multilevel case. After each subspace diagonalization,
coefficient vector is decomposed into contributions from the vanatypelevels. These
individual contributions are accumulated to define

‘Sin(w[no,nL“nk])’ — ’C(no+n1...+nk+1):n‘ (4.4)
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TABLE 11l
MultiLevel SPAM Convergence

2-level SPAM 3-level SPAM
Dynamic Tolerance Dynamic Tolerance
Iteration o, Ny, Ny] Ir| [No, N1, Ny, N3] Ir|
1 [0,0,1] 1.13E+00 [0,0,0,1] 1.13E+00
2 [0,0, 2] 3.23E-01 [0,0,0,2] 3.22E-01
3 [0,0,3] 1.05E-01 [0,0,0, 3] 1.08E-01
4 [0, 0, 4] 2.73E-02 [0,0,1,0] 1.53E-01
5 [0, 0, 5] 5.41E-03 [0,0,1,1] 4.00E-02
6 [0,1,0] 1.02E-02 [0,0,1,2] 1.05E-02
7 [0,1,1] 1.63E-03 [0,0,2,0] 1.05E-02
8 [0,1,2] 3.14E-04 [0,1,0,0] 1.35E-02
9 [0,1,3] 1.05E-04 [0,1,0,1] 6.15E-03
10 [0, 2, 0] 1.08E-04 [0,1,0,2] 1.37E-03
11 [1,0,0] 1.27E-04 [0,1,0,3] 4.17E-04
12 [1,0,1] 5.37E-05 [0,1,0,4] 5.65E-05
13 [1,0,2] 1.52E-05 [0,1,1,0] 3.25E-04
14 [1,0,3] 3.77E-06 [0,1,1,1] 5.63E-05
15 [1,0, 4] 5.32E-07 [0,1,2,0] 5.63E-05
16 [1,0,5] 7.06E-08 [0,2,0,0] 5.64E-05
17 [1,1,0] 2.74E-07 [1,0,0,0] 8.87E-05
18 [1,1,1] 2.46E-08 [1,0,0,1] 2.57E-05
19 [1,1,2] 4.43E-09 [1,0,0,2] 6.78E-06
20 [1,2,0] 4.37E-09 [1,0,0,3] 2.46E-06
21 [2,0,0] 5.47E-09 [1,0,0, 4] 5.15E-07
22 [1,0,1,0] 1.55E-06
23 [1,0,1,1] 2.56E-07
24 [1,0,1,2] 9.90E-08
25 [1,0,2,0] 9.72E-08
26 [1,1,0,0] 1.16E-07
27 [1,1,0,1] 4.43E-08
28 [1,1,0,2] 1.35E-08
29 [1,1,0,3] 3.89E-09
30 [1,1,1,0] 4.98E-09
31 [1,2,0,0] 5.02E-09
32 [2,0,0,0] 5.29E-09
Nproduct [2, 4, 15] [2,4,7,19]

Note Convergence trajectories of the lowest root of the banded
test matrix withN = 10,000, W, = 64, andA =0.75. For the SPAM
calculationsW; = 32, W, =16, W; = 8. The convergence criterion is
Ir] <1078,

for each approximation levél This factor, along with the estimates of the matrix difference
norms, provides a prediction for the residual norm after the next contraction &ttthe
level according to Eq. (A13). The current intermediate residual norm is compared to th
estimates according to

|rihon-l) < o - Max{| Sin(y o-M-Md) | [H&D — O k=0...wtypg }.  (4.5)

The Max in this comparison picks out the weakest link in the approximation sequence
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the current set of expansion vectors. Just as in the single-level SPAM discussed abo
does not improve efficiency to converge the intermediate results beyond this value bec:
a larger residual norm will be computed later after some subsequent contraction step
seen in Table Ill, this results in an acceptable convergence trajectory without any appa
wasted effort. It should be mentioned that an incorrect estimate of the scaledamtaf

a matrix difference norm does not result in incorrect results, it simply results in too mu
effort required to achieve the correct results. Furthermore, just as for the single-level c:
the penalty for choosing am (or a matrix difference norm estimate) too large is greate
than that for choosing amtoo small, so, in general, it is better to be too conservative tha
too optimistic.

In all of the above examples, the traditional Davidson DPR vector has been used to de
the new expansion vectors. Before examining other SPAM convergence trajectories, var
choices for trial expansion vectors within the SPAM method will be compared. ©ts#n
[26] have proposed the Inverse-Iteration Generalized Davidson (IIGD) method for gene
ing expansion vectors within the Davidson subspace method. As discussed in Appendi
this is equivalent to the Generalized Jacobi—Davidson (GJD) method of Slejpain
[27, 28] when applied to the symmetric eigenvalue problem with unit metric matrix ar
with the same (diagonal) approximate preconditioner. For essentially the same effort,
using the same diagonal preconditioner, the IIGD/GJD method results in an improved
pansion vector that sometimes converges better than the traditional Davidson DPR met
Another choice of expansion vector is the residual vector itself. As discussed in Appendi
this results in the well-known Lanczos method.

The convergence of the Davidson method using these three expansion vector choic
compared in Table 1V for the sam\% = 64 banded matrix described above and with the
same convergence tolerance. The convergence trajectory for the DPR expansion vectc
already been given in Table I. The convergence using the 1IGD/GJD expansion vecto
essentially identical for this matrix. Thisis, in part, because the starting vector is the first c
umn of the unit matrix; other starting vector choices would show larger iteration-by-iteratit
differences. Both the DPR expansion vector and the IIGD/GJD expansion vector require
iterations to converge. The Lanczos expansion vector, by contrast, requires 68 iteratior

TABLE IV
Comparison of Various Expansion Vectors

Expansion vector

type W] Nimax Noroduet
DPR [64] 12 [12]
IIGD/GJD [64] 12 [12]
Lanczos [64] 68 [68]
SPAM+DPR [64, 0] 12 [11, 21]
SPAM+IIGD [64, 0] 12 [11, 21]
SPAM+Lanczos [64, 0] 28 [13, 131]
SPAM+DPR [64, 32, 0] 7 [2,13, 20]
SPAM+IIGD [64, 32, 0] 7 [2, 13, 20]
SPAM+Lanczos [64, 32, 0] 77 [2, 14, 289]

Note Convergence of the lowest root of the banded test matrix with
N = 10,000 andA = 0.75. The convergence criterionfig < 10°8.
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converge. As discussed in Appendix B, this is typical of convergence comparisons betw
the preconditioned gradient expansion vectors, which selectively converge the eigenpa
interest, and the underlying Krylov subspace that is used in the Lanczos method, wi
does not converge selectively. Because there are no contractions or restarts in these ca
tions, the maximum subspace is the same as the number of products for these calcula
Although the subspace diagonalization is still trivial for these cases, even for the slo
convergent Lanczos case, the vector manipulations can become significant, particularl
very large matrix dimensions.

For comparison purposes, rows 4—6 of Table IV show the convergence results for lev
SPAM calculations in whictid® is chosen to be the same diagonal matrix as the preco
ditioners used in the DPR and in the IIGD/GJD methods. The three rows correspond to
three different choices for expansion vectors: DPR, IIGD/GJD, and Lanczos. The cony
gence is identical, iteration by iteration, for the DPR and IIGD/GJD expansion vectors:
exactH© matrix—vector products are required and 28 diagonal matrix—vector products
required to converge the highest-level SPAM eigenvalue problem. The fact that 11, ra
than 12 (as befored @ products achieves convergence for this problem is an insignifica
discretization artifact; as seen in Table I, the residual norm on the 11th DPR iteratior
just slightly larger than the convergence tolerance, and for these SPAM convergence c:
it is just slightly below the tolerance on the 11th iteration. This demonstrates that ther:
no significant advantage of the SPAM method over these other preconditioned expan
vector procedures for this choiceldf! . As discussed in Appendix B, it is expected that this
result will be general. This is because the formal advantages of SPAM are not signific
compared to the coarseness of the diagehd approximation. Furthermore, although
SPAM requires, in principle, several iterations to solve ftHel eigenvalue equation, in
practice it is observed usually that a single DPR (or IIGD/GJD) iteration is sufficient
achieve convergence with the dynamically adjusted tolerance. Forcing convergence be
this value does not improve significantly the overall efficiency. When only a single iterati
is performed to solve the SPAM equation, the expansion vector is exactly the same as the
the DPR method (or whichever expansion vector method is used to generate expansion
tors for the iterative solution of the highest SPAM level). This was demonstrated already
Table 1. The results in Table IV were generated by adjusting the estimajtelfdr— HO |
in order to artificially prevent this from occurring for this particular comparison; two o
three iterations where required to solve for each SPAM eigenvector for the SPAM/DPR
SPAM/IIGD expansion vectors.

Row 6 of Table IV shows the results for the Lanczos expansion vector. For this expans
vector, 13 exacH© matrix—vector products are required and 131 diagonal matrix—vect
products are required to converge the highest-level SPAM eigenvalue problem with the s
adjusted estimate fgH® — H(@ || as before. Thisis aninteresting result for several reason
First, it demonstrates the general principle that the SPAM method isolates the numbe
exact matrix—vector products that are required to achieve convergence from the qualit
the individual expansion vectors. This is true for arbitrdfy approximations, the diagonal
approximation here is simply the most extreme example. Second, this example shows the
number of high-level (i.e., more approximate) matrix—vector products generally increa
as new SPAM approximation levels are added. This is compensated by a reduced nut
of low-level (i.e., more exact) products. Whether or not this is beneficial depends on
relative costs of the products with the two different approximations and on the number
products of each that are required. This is discussed in more detail below. Finally, ano
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TABLE V
Total Effort Model for Various SPAM Levels
[w] Nproduct Nmax =1 u=3/4 p=1/2 p=1/4 p=1/10 p=1/100
[64] [12] 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
[64, 32] [2,13] 7 1.2500 0.9792 0.7083 0.4375 0.2750 0.1775
[64, 32, 16] [2, 4, 15] 6 1.7500 1.1198 0.6458 0.3281 0.2125 0.1701
[64, 32, 16, 8] [2,4,7,19] 5 2.6667 1.4128 0.6771 0.3112 0.2074 0.1701
[64, 32, 16, 8, 4] [2,4,7,11, 22] 4 3.8333 1.7116 0.7083 0.3079 0.2069 0.1701
[64, 32, 16, 8, 4, 2] [2,4,7,12, 15, 21] 4 5,0833 1.9775 0.7370 0.3087 0.2070 0.1701

[64,32,16,8,4,2,1] [2,4,7,10,15,18,23] 4 6.5833 2.1889 0.7383 0.3063 0.2068 0.170:

Note Convergence of the lowest root of the banded test matrixWith 10,000 andA = 0.75. The convergence
criterion is|r| < 10°8.

advantage of SPAM in this situation is that the maximum subspace dimension reac
during the entire process is onfiy=28 compared to tha = 68 with the straight Lanczos
method in row 3.

Rows 7-9 of Table IV show the results for a 2-level SPAM convergence with each
the three choices for expansion vectors. The number of products required are 2, 13, an
respectively, for the three matrices with bandwidths of 64, 32, and 0 for the DPR and
the IIGD/GJD expansion vectors. The Lanczos expansion vector requires 2, 14, and
matrix—vector products, respectively, for the three matrices. The same general trend is !
as for the previous Lanczos rows in Table IV. Namely, the slow convergence of the Lanc
expansion vector is isolated to the highest approximation level. It is also worth noting tl
the maximum subspace dimension has increased=d@7, which is larger even than the
straight Lanczos convergence in row 3. Although this increase is somewhat artificial bece
of the adjusted convergence tolerance, the increase is interesting even when compare!
relative way to row 6, which has the same adjusted convergence tolerance.

Multilevel SPAM convergence is examined in Table V. The bandwidths of the vario
approximation levels are shown in the first column, and the corresponding number
matrix—vector products required to achieve convergence is shown in the second colu
The expansion vector in all cases is the DPR procedure, but the IIGD expansion prodt
identical results. Except for small variations in the matrix—vector product counts resulti
from threshold discretization, it is generally observed that as new SPAM levels are adc
the counts for the previous levels remain constant. Itis only the highest level that is chan
when a new level is added. The overall effort required to achieve convergence is giver
the sum of the total efforts required for each level. This can be modeled by assuming
the ratio of the effort required,

1k = Effort(H®x) /Effort(H*™Px), (4.6)

for each approximation level is the same for all levels. This will not be true in actu
applications, but it gives an idea of the general trend of overall efficiency as a function
w and of the number of approximation levels.

The first column of Table V corresponds o= 1, which means that all of the matrix—
vector products require the same effort. As expected, itis seen that the overall effortincre
with the number of SPAM levels. This is actually the situation for the banded test matric
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used in this section—they all require the same effort regardless of the bandwidth,
no efficiency is gained by approximating one matrix by another. The second colul
corresponds tp = 3/4. That is, each successive SPAM level requires 75% of the effort
the previous one. In this case, itis seen that for the convergence rates for this model prok
the minimum overall effort decreases for one SPAM level, and then begins to increas
more approximation levels are added. The third column correspongs=th/2. For this
case, adding one SPAM level reduces the overall effort by about 30%, adding a sec
level reduces the overall effort by an additional 5%, but adding more SPAM levels cau
the overall effort to increase. The next column correspongs=tal/4. For this case, the
overall effort decreases down to about 31% with three approximate matrices, and rem
fairly constant after that. For = 1/10, the overall effort minimizes with three SPAM levels
at 21%, and then remains roughly constant beyond that. The last column corresponc
w=1/100, and the effort minimizes at 17% with two SPAM levels. The general conclusi
from this effort model is that there is some optimum SPAM level for each problem, and
creasing the SPAM level beyond that either increases the overall effort, or leaves the ov
effort approximately the same so that nothing further is gained. The optimal approximat
level at which that minimum effort occurs depends on the accuracy of the sequence
matrix approximations and on the effort required for each matrix—vector product at e:
approximation level.

Itis also observed in Table V that the maximum subspace dimension tends to decrea
the number of SPAM levels increases. This effectis notincluded into the simple effort mo
described above, but for very large matrix dimensions, where either memory or extel
storage is a limiting factor, this can be an important aspect of overall efficiency.

All of the above discussion has concerned convergence of the lowest eigenpair. C
vergence of several of the lowest eigenpairs is examined next. There are several wa
converge excited states with the Davidson method. One approach is to converge the lo
vector completely and then save that converged vector and the corresponding matrix—ve
product. Then a new trial vector is generated for the second root, and the procedut
restarted with two initial trial vectorsx{, x2) and one product vectomg). Because the
lowest vector satisfies its convergence criteria, all of the expansion vectors in this sec
step will be directed toward convergence of the second eigenpair. Upon convergence,
of the lowest two vectors and products are saved, a new trial vector is generated for the
root, and the process is continued until all of the desired eigenpairs have been compt
The lowest 10 eigenpairs of the banded test matrix described above are computed in
“one at atime” approach, and the convergence summary is given in the first row of Table
The residual norm for each vector is convergedrid < 10-8, the same as the previous
calculations. For this particular matrix, the convergence of each new vector requires 1
12 iterations, and convergence of all 10 roots requires 118 matrix—vector products total.
maximum subspace dimension reaches its maximum valne-&1 on convergence of the
10th vector. At this time, nine converged vectors for the lower roots have been computed
stored, and while iterating the last vector, twelve additional subspace vectors are reqt
to achieve convergence.

The above “one at a time” procedure for excited states is appropriate when it is
known in advance how many vectors are needed. After each vector is converged, it |
be examined to determine if another vector needs to be computed. This characterizatic
of course, very problem-specific. If it is known ahead of time how many vectors will t
required, then another procedure may be employed. In this approach, all of the reque
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TABLE VI
Convergence Results for Multiple Eigenvectors

Method l_\N] Nmax Nproduct
DPR
One vector at a time [64] 21 [118]
Simultaneous/lowest [64] 42 [42]
Simultaneous/cycle [64] 28 [28]
Simultaneous/larges$t;| [64] 28 [28]
SPAM
One vector at a time [64, 32] 17 [20, 138]
Simultaneous/lowest [64, 32] 42 [20, 62]
Simultaneous/cycle [64, 32] 36 [20, 50]
Simultaneous/largest;| [64, 32] 34 [20, 52]

Note Convergence of the lowest 10 roots of the banded test matrix\vith 0,000 andA = 0.75. The conver-
gence criterion igr;| < 1078. The matrix-vector product counts are the totals for all 10 roots. The converge
computed eigenvalues are:; =0.585510562346823), = 1.723295074298214 ).; = 2.808750052512915,

s =3.867329659136034,15 = 4.908652636212611,1¢ = 5.937892192171621, 1, = 6.958397150707880,
g =7.972562750803514,¢ = 8.982177511445222,,, = 9.988585488303615

vectors are converged simultaneously, from the same set of expansion vectors. One or
initial vectors are generated, and at each step, one or more unconverged vectors are cl
to define one or more new expansion vectors. If the effort involved in the computation
a matrix—vector product is dominated by processing of the matrix itself (e.g., generat
of the matrix elements, indexing of the elements in a sparse data structure, or perforn
the associated 1/0 on the matrix elements), then it is beneficial to compute simultaneol
several new trial vectors. This is because the cost of the matrix processing is amorti
over several vector products. This is the basis of the blocked version of the David:
method proposed by Liu [4, 9]. However, if the effort is dominated by the multiplication
with the vector elements, then it is more efficient to add a single new vector at a tir
to the subspace. This latter situation is assumed in the SPAM implementation descri
in this section. There are three ways that this addition of a single expansion vecto
done.

The first way is to select the lowest unconverged vector, and use the corresponding
value and residual vector to define the new expansion vector. Once this vector is added t
space, it may benefit not only the selected eigenpair, but also all of the other eigenpair:
this way, the total effort required for convergence of several eigenpairs is reduced comp:
to the “one at a time” approach. The total matrix—vector product count for this method
given in the second row of Table VI. The total number of products is reduced to 42, whi
is a significant reduction compared to the “one at a time” approach. On average, the nun
of matrix—vector products has been reduced from 11.8/eigenpair down to only 4.2/eig
pair. However, it is also seen that the maximum subspace dimension has increased
n=21ton=42, so, compared to the “one at a time” approach, there is a tradeoff betwe
reducing the number of expansion vectors and increasing the maximum subspace dir
sion.

A second way that individual expansion vectors may be selected is to cycle among
unconverged vectors. It is perhaps not obvious why this should result in an improveme
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but experience shows that this is the case for some problems. The qualitative reason fo
is that the final expansion vectors computed for a particular almost-converged eigenve
are rather selective for that particular vector and do not benefit the other vectors wit
the expansion space. In contrast, the vectors that are added early for the poorly conve
eigenvectors tend to benefit other nearby poorly converged eigenpairs. By cycling over
roots early, rather than picking one and iterating it to convergence, all the vectors within
space are benefited. The results of this approach are given in the third row of Table VI.

seen that the total number of products is reduced to 28 vectors, which is, on average, less
three matrix—vector products per converged eigenpair. This improved overall converge
also reduces the maximum subspace dimension dowr=&8. This is not as good as the

“one at a time” value, but it is better than the second row results.

A third way that individual expansion vectors may be selected is to improve the unct
verged vector that has the largest residual norm. The advantage of this approach is the
intermediate Ritz values tend to maintain to the extent possible the same order throug
the convergence process. The convergence results for this method are given in the fourtt
of Table VI. For this test case, the convergence is comparable to that for the cycling opt

These same four general approaches to convergence of multiple eigenpairs in the t
tional Davidson method also apply to the SPAM method. The matrix—vector product cou
are reported in rows 5-8 of Table VI. In all four cases, the SPAM procedure requires o
20 exacH @ matrix—vector products to converge all 10 eigenpairs. The number of apprc
imateH® products required shows the same trend as discussed above for the traditi
Davidson method. Namely, the “one at a time” approach is least efficient and requi
138 H® products, the “lowest unconverged vector” approach is significantly better wi
62HY products, the “cycle among the unconverged vectors” approach is best and reqt
only 50H® products, and the “largest residual” approach is almost as good wit52
products. In all cases, the average humber of exact products required is reduced to only
per converged eigenpair, which is significantly better than even the best performance th
achieved with the traditional Davidson/DPR procedure. Furthermore, Htheproducts
are very much cheaper than thé® products, then the use of the SPAM method allows
the practical use of the “one at a time” approach to convergence in those cases wher:
number of converged eigenpairs is unknown at the beginning, and each converged ve
must be examined. The maximum subspace dimensions for these four SPAM cases fc
the same trend as for the analogous four DPR cases. Namely, the “one at a time” appr
has the smallest subspace requirements, whereas the simultaneous convergence 0j
cycling among the unconverged vectors, choosing the largest residual, and iterating or
lowest unconverged vector, result in larger subspace requirements.

The previous discussion has assumed that the lowest eigenpairs within the spectrur
desired. All of these vector choices apply also to the convergence of the highest eigenj
within the spectrum. An example of this is given below.

Inthe above simultaneous convergence examples, all the requested vectors are conv
relative to their own dynamical convergence tolerances at each SPAM level before cont
tion of the vectors to the next lower (more accurate) SPAM level occurs. This contract
involves the projection operat@!™, followed by orthonormalization of all the vectors, and
this projection may introduce linear dependencies in the set of contracted vectors. E
during the iterations at some level, none of the vectors are converged, so a new expar
vector is computed for each requested eigenpair. However, not all of the vectors converg
the same iteration; some will converge before others and new expansion vectors are a
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only for unconverged eigen pairs. Consequently, there are several situations that can c
during contraction of the vectors: (1) There are more vectors than roots, and each root
at least one expansion vector computed for it. In this case the projected vectors will be
early independent. (2) There are more new expansion vectors than roots sought, but ¢
roots do not have expansion vectors because they are already converged at that level
projected vectors may be linearly dependent in this case. (3) There are fewer new expar
vectors than roots. There may be linear dependencies in the projected vectors in this
In the SPAM implementation described here, all three of these situations are treated \
singular value decomposition (SVD). The subblock of the coefficient matrix is decompos
according to

Clnm+1):n,1:n, = UUVT , (4-7)

wheren, isthe number of requested roots (or the current subspace dimension as appropri
Nm is the number of expansion vectors up throughritie SPAM level (i.e., the onesot
being contracted)) andV are orthogonal square matrices; ant the “diagonal” matrix

of singular values. In general, the subblockcd$ rectangular, not square, andhas the
same dimensions as the subblockcofAll three of the above situations may be treated
by examining the ratio of the singular values/o1. When this ratio becomes too small,
less than about 0.1 in most situations, then the corresponding vedibmay be safely
ignored without affecting convergence. In case (1) above, there will lgngular value
ratios that are very close to 1.0. In case (2) above, there will be one or more singt
values close to 1.0, and the remaining singular values will be small (usually 0.001
smaller). In case (3), there will be one or more ratios close to 1.0, but there may be &
small singular values that must be deleted. Once the number of “large” singular values
identified, the corresponding columnsldfdefine the appropriate contraction coefficients
and the expansion vectors are contracted accordingly. In the special case of a single
this procedure is always equivalent to the contraction described in Figs. 2 and 3. |
only for simultaneous convergence of several states that the SVD procedure is use
recognize linear dependencies. There are several features of this SVD transformation the
important. Because the columnslfare orthonormal, and the underlying expansion spac
is already orthonormal, the vectors may be contracted without further orthonormalizati
Also, all of the above SVD operations occur just within the subspace; manipulations witl
the large vector spacél™ are therefore simplified or eliminated entirely. The malfiis
not used in this procedure, so it need not be computed or stored. In situations for wt
loose convergence criteria are specified for some eigenpairs, and tight convergence cri
are specified for others, it is convenient to weight correspondingly the colunmgradr

to the SVD procedure.

There are two other forms of excited state convergence that are implemented within
SPAM procedure discussed in this section. In some situations, a single interior eigenpa
desired of some unknown indgxwithin the entire spectrum (1. N), but a good estimate
of the final converged eigenvalue is known. After the Ritz values within the subspace
determined, the vector associated with the approximate eigenvalue closest to this refer
value is used to define the next expansion vector. This is calletitdhomingmode. In
order to converge to the correct eigenpair, a good initial guess for the vector in addition to
eigenvalue is required, and the target eigenvalue should be well-separated from other ne
eigenvalues. An example of root-homing convergence is given in Table VII. An estimate
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TABLE VII
Interior Eigenpair Convergence

Method NV] Nmax Nproduct
Root-homing, DPR expansion vector [64] 20 [20]
Root-homing, IIGD expansion vector [64] 16 [16]
Root-homing, SPAM+DPR expansion vector [64, 32] 16 [2, 25]
Root-homing, SPAM+IIGD expansion vector [64, 32] 16 [2,19]
Vector-following, DPR expansion vector [64] 19 [18]
Vector-following, 1IGD expansion vector [64] 20 [20]
Vector-following, SPAM+DPR expansion vector [64, 32] 15 [2, 24]
Vector-following, SPAM+IIGD expansion vector [64, 32] 16 [2, 22]

Note Convergence of an interior root of the banded test matrix Wit 10,000 and
A =0.75. The convergence criterion jisl < 1078, In root-homing modep.; = 10.0 and
X; = €y;. Invector-following modez = x; = ey; andv™ z= 0.7439. In all cases, the converged
eigenpair corresponds g, = 9.988585488303615

the eigenvalue ig; = 10.0 and the starting vector ig = €3, the 11th column of the unit
matrix. The Davidson procedure with the DPR expansion vector converges to the approp
root in 20 iterations. In this case, the IIGD expansion vector converges in only 16 iteratio
Applying a single-level SPAM to this requires only two exact matrix—vector products
converge, a significant reduction. SPAM using the [IGD expansion vector requires the s
number of exact products, but it reduces the number of approximate products compare
the DPR expansion vector.

The other excited state method applies to the situation in which the ipdeihin
the entire spectrum (1. N) is unknown, but it is the character of the eigenvector tha
determines the appropriate eigenpair. Suppose that there is some reference, yastor
haps that results from some simplified model problem, or the solution of an eigenva
equation that is “similar” to the current problem in some general sense. After the de
mination of the Ritz vectors, the overlaps ¢;) may be computed forj(=1...n), the
current subspace dimension. Then the approximate vector with the largest absolute ov:
is chosen to define the next correction vector. This is calledelstor-following modeAn
example of vector-following convergence is given in Table VII. The same starting vec
X1 =¢y; is used as before for the root-homing mode, and this same vector is used :
to define the reference vector. The convergence trajectory is slightly different for vect
following than for root-homing, and in this particular case the DPR expansion vector p
forms slighltly better than the 1IGD expansion vector for the straight Davidson method, |
the IIGD expansion vector performs slightly better for the SPAM method. In both of tt
SPAM calculations, only two exact matrix—vector products are required to achieve con
gence, and these are significant improvements over the straight Davidson DPR and |
results.

Inspection of the converged eigenvector in both the root-homing and vector-followi
calculation reveals that the initial vector overlap with the final converged eigenvectoris o
0.7439. If a better starting vector is used, then convergence improves for the DPR and |
methods. The excellent convergence results of SPAM in this case demonstrate the inhe
advantage of isolating the quality of the initial vector from B convergence rate. In this
case, even starting with a relatively poor starting vector, the SPAM method converge
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the same number of iterations as does a SPAM ground state calculation with thiel Same
By contrast, the Davidson DPR and IIGD methods require almost twice as many iterati
for this interior eigenpair (with a poor starting vector) as they require for the ground stz
calculation (with a better starting vector).

Tensor-Product Examples: Tensor-product (also called direct-product, or Kronecke
product) matrices occur in many application areas. Examples include separable differel
equations, boundary value problems, translational and rotational operators in many-b
problems, and symmetry operators in group theory. A tensor product of two matrices
defined by

(A ® B)ij)ki) = Aik Bjr. (4.8)

If the dimensions of the component matricksandB are Ny x Ma and Ng x Mg, re-
spectively, then in the tensor-product “matrixij  is treated as a single row index that
ranges from 1 tdNaoNg, and kl) is treated as a single column index with range MioMg.
Equation (4.8) may be used to demonstrate the following useful relations with tensor-proc
matrices:

a (A+B)@C=A®C+B®C
b. A®B)C=A® (B&®C)
c. (AB)® (CD)=(A®C)(B®D)
d AgB)t=A"1gB?
(4.9)
e. RankA ® B) =RankA) - RankB)
.TrA®B)=Tr(A)-Tr(B)
9. (A(A®B)}={2j(A)-A(B):j =1...Na,k=1...Ng}
h. Det(A ® B) = Det(A)NeDet(B)N

All of these relations generalize in the obvious way for tensor-products of three or mc
component matrices. Consider a general matrix—vector product of a tensor-product

trix with a vector:w = (A ® B)x. In the general dense case, this would appear to requil
NaNgMaMg floating point multiplications (and an equal number of additions). Howeve
Eqg. (4.8) allows the matrix-vector product to be rewritten in the form

wij = Z(A ® B)ij)knXwy = Z Aik(Z BjIXkI> (4.10)
|

(k) k

The term in parentheses is a matrix—matrix product that reqirgdg Mg floating point

multiplications. The second summation, okas a second matrix—matrix product that re-
quiresNaMa Ng floating point multiplications. For rectangular matrideandB, a different

operation count may result if the summation order is interchanged. Particularly for squ
component matrices of large dimension, matrix—vector products involving tensor-prod
matrices are much easier to compute in this “operator” form than those of a general ma
of the same dimensions. Sparseness and symmetry of the component matrices can re
the operation counts even below those given above. In the more general case, matrix—v



THE SPAM DIAGONALIZATION METHOD 493

products of tensor-product matrices may be computed as

Wi = > (AV QAP ... @ AM)
(j1J2---Jm)

- (A (S ) e
jl jm

j2

(itizomim) o ) X2 I2-Jm)

In other words, each component mathi¥ is used to transform one index in the “vector”
X, and there aren such nested one-index transformations. With a suitable arrangem
of the subscript indices, each one-index transformation is a matrix—matrix product, ¢
for rectangular component matrices, the total operation count depends on the order o
summations. If each component matrix is square and of dimersiothen Eq. (4.11)
requires onlym N™*Y floating point multiplications. This should be compared to K&
multiplications that are required for a general matrix—vector product involving a matrix
dimensionN™. Therefore, when treated in “operator” form as in Eq. (4.11), matrix—vectc
products involving tensor-product matrices can require much less effort than a gen
matrix—vector product of the same dimension.

Egs. (4.9) may be used to show that the eigenpairs of a tensor-product matrix are g

by

((A®B) — Adj)) Vi) =0
Vij) =ViA®V,-B (4.12)
rijy=2i(A)-2;(B)

Murray et al. [25] have proposed the use of tensor-product matrices as test problems
iterative diagonalization methods because the exact eigenvalues and eigenvectors m
determined in this product manner and compared to the results from the iterative calcula

In the present work, the reduced computational effort for the matrix—vector produ
involving tensor-product matrices is exploited in a different manner. Suppose the eigenp
are required for some large matki? . Itis assumed thad © is not a tensor-product matrix,
but a good approximatioH® exists that is of tensor-product form. Such approximation:
often occur naturally, for example, from low-order operator expansions or truncatio
combined with an appropriate formal expansion basis. The goal in the present work i
exploit the tensor-product naturetsf? in order to improve the efficiency of the eigenvector
determination oH©.

In order to model this general kind of matrix decomposition, a perturbed-tensor-prod
matrix H© will be defined as

HO=—HD 4 gA, (4.13)

inwhichH? =AD @ A@ @ ... ® A™ js them-fold tensor-product of the 4 4 matrices
used by Murrayet al. [25]:

3+k/10 1/10  2/10  3/10
1/10 4+k/10 0 o |
2/10 0 5+k/10 0 |
3/10 0 0  6+k/10

AkHD fork=0...(m—-1). (4.14)
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The perturbation matriA is defined with the elements

Ajk =-1/2; for|j —k=1
AN = Anp= —1/2 (4.15)

Ajx = 0; otherwise

This matrix occurs in the tickel theory of the molecular electronic structure of cyclic
polyenes[10], and both the eigenvalues and the eigenvectors have closed-form, ana
solutions. The lowest eigenvaluelis= —1, and the corresponding (unnormalized) eigen-
vector is given by =1 for k=1...N; the largest eigenvalue isy = +1, and the corre-
sponding eigenvector ig = (—1)¥ for k=1...N; the remaining eigenvalues are doubly
degenerate and are otherwise distributed evenly about zero in between these extreme
ues. This results in the nornigd | =1 and||H® — HO|| = 8. The perturbation is not of

a tensor-product form, and this ensures #H& is not an exact tensor-product. However,
B will be chosen appropriately in order to ensure tH&Y is a good approximation that
can be used to accelerate convergence of the eigenvectors. The sparsedoatioufs for
efficient computation of matrix—vector products, and this combination results in good t
problems for the SPAM method. The test cases in [25] involve the 8-fold and the 10-fold t
sor products. The corresponding matrix dimensions &re 5,536 and ¥ = 1,048,576,
respectively. Ordinarily, dense matrix—vector products with matrices of these dimensit
would require 4% =4.3. 10° and #4° = 4.1 10'?floating point multiplications respectively;
by contrast the tensor-product contributions, computed according to Eg. (4.11), require
8.-4°=2.1-1CF and 10 4**=4.2. 10’ floating point multiplications, respectively (ignor-
ing the sparseness and symmetry in the component matrices), and the operation cour
the perturbation matrix is insignificant. If these test matrices are taken as models of gen
matrices of the same dimensions, then these operation counts would results in effort re
of ug=4.9-10% and u10=1.0-107°. These effort ratios are typical of tensor-product
approximations, and these examples show the tremendous advantage this type of ap|
imation offers in improving efficiency when combined with the SPAM method. Althoug
these test cases are nontrivial, they do provide a relatively inexpensive (a few second:
each matrix—vector product on current desktop computers) model for testing the beha
of SPAM for tensor-product matrices.

The convergence summaries are given in Table VIII for the lowest few roots of tl
m= 8 andm = 10 matrices. For both matrices, the perturbation parangeteas chosen to
result in 10 to 20 DPR iterations with the usual Davidson method to converge the low
eigenpair. This level of perturbation is representative of operator approximations in me
applications. The same four convergence approaches are taken as before: the vecto
converged either sequentially or simultaneously, and the three possible choices to deter!
the next expansion vector are compared for the simultaneous convergence cases. Inall c
the initial vectors were chosen to be the appropiii#te eigenvector, which was computed
as a tensor product of the component matrix eigenvectors according to Eq. (4.12).

The DPR convergence summaries for the lowest 10 roots are given in the first four rc
of Table VIII. As with the previous banded matrix examples, the simultaneous conve
gence options result in fewer matrix—vector products than the “one at a time” converge
approach, and the simultaneous convergence options require larger maximum subspa

The convergence summaries for the SPAM calculations, with the usual DPR expan:
vector, are given in rows 4-8 in Table VIII. Significant reductions in the numbekrs®f
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TABLE VIl
Perturbed-Tensor-Product Convergence Results for Multiple Eigenvectors

m=38 m=10
Method Nimax Nproduct Effort Nmax Nproduct Effort
DPR

One vector at a time 40 [203] 1.000 26 [145] 1.000
Simultaneous/lowest 82 [82] 1.000 99 [99] 1.000
Simultaneous/cycle 94 [94] 1.000 94 [94] 1.000
Simultaneous/largest; | 95 [95] 1.000 93 [93] 1.000

SPAM+DPR nw=4.9-10"* n=10-10"°
One vector at a time 42 [20, 164] 0.099 26 [20, 132] 0.138
Simultaneous/lowest 83 [19, 87] 0.232 99 [20, 104] 0.202
Simultaneous/cycle 86 [19, 90] 0.203 94 [20, 101] 0.213
Simultaneous/largest; | 95 [19, 99] 0.201 94 [20, 99] 0.215

SPAM+IIGD uw=20-10" uw=4.0-10"°
One vector at atime 11 [20, 20] 0.099 11 [20, 20] 0.138
Simultaneous/lowest 20 [19, 21] 0.232 20 [20, 21] 0.202
Simultaneous/cycle 20 [19, 21] 0.203 20 [20, 21] 0.213
Simultaneous/largest; | 20 [19, 21] 0.200 20 [20, 21] 0.215

Note Convergence summaries of the lowest 10 roots ofitke8 andm = 10 perturbed-tensor-product matrices
described in the text. The initial vectors in all cases are the eigenvectors of the tensor-product matrices, w
were computed as tensor-products of the eigenvectors ofthé domponent matrices. The matrix—vector product
counts are the totals for all 10 roots. For tine=8 calculationsN = 65,536, 8 =10, and|r;| < 10~*. For the
m= 10 calculationsN = 1,048 576, = 100, andr;| < 1C°.

products are achieved for the “one at a time” convergence mode and for the simultane
convergence modes. The total relative effort is given for each convergence mode relz
to the corresponding DPR convergence using gheffort ratios discussed above. The
reduction in effort is significant for all of the SPAM cases, but largest for the “one at a tim
convergence mode, resulting in a 91% reduction of effort relative to the DPR “one at a tin
calculation for than =8 matrix, and an 86% reduction of effort for the= 10 matrix.
In addition to using the diagonal elementsk{ as the preconditioner in the DPR

method, the tensor-product naturg-S® allows for a significant improvement when using
the 1IGD/GJD procedure to determine the expansion vectors:

(H® — p)8"P = _r 4 ex. (4.16)
The spectral form(H® — p) =U(D — p)UT, with
U=UPgUuUPg... UM (4.17)

in which U® is the set of eigenvectors of the component mai&, allows for the effi-

cient computation of the inverse. This is callefhst inverseprocedure. For the component
matrices in Eq. (4.14), the eigenvectors are the same for each component matrix, anc
corresponding component eigenvalues are related by a uniform shift of 1/10 from the |
vious component matrix. This leads to some simplifications in computing the fast inver
but it does not result in any significant additional performance advantage. The eigen
uesD are products of the component matrix eigenvalues, the generalization of Eq. (4.
This spectral decomposition allows the IGD/GJD expansion vector to be compu
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with the steps

ro =UTr

xu = UTx
(4.18)
(D —p)dy = —ru +exy

560 — Us, .

During the SPAM iteration, each IIGD/GJD expansion vector requires four total matri:
vector products (two withuT, one withU, and one, after orthonormalization, with®)
compared to the singld® matrix—vector product each iteration with the simple diagona
preconditioner. The effort ratig is four times larger for this procedure than that for a
SPAM iteration involving the simple diagonal preconditioner. Therefore, in order to impro
efficiency, the 1IGD/GJD procedure should converge jd,lor fewer, of the number of
SPAM iterations required with the simple diagonal preconditioner. The optimal choice
expansion vector method is therefore problem-specific.

The convergence summary of SPAM using the IIGD/GJD expansion vectorsis givenin
last four rows of Table VIII. These results may be compared directly with the previous fo
rows, which used the DPR expansion vectors in the SPAM procedure. For bath=ge
andm= 10 matrices, the SPAM IIGD expansion vectors result in significant reduction
in the number oH® products that are required, but, because of the larger effort rati
u, only modest overall efficiency improvements compared to the DPR expansion vect
However, the maximum subspace dimension is reduced significantly for the [IGD/G.
expansion vector choice compared to the DPR expansion vector choice.

For future reference, the lowest computed eigenvalues are given in Table IX for b
of these tensor-product test matrices. The unpertufbed eigenvalues are the tensor-
product eigenvalues, the lowest of which are given by Muetzal. (note the typographical
error fori, in Ref. 25). These may also be computed by taking the appropriate products
the eigenvalues of the component matrices of Eq. (4.14). The pertarbed eigenvalues
have no simple or closed-form solution.

MRSDCI Examples: The multireference single- and double-excitation configuratiot
interaction (MRSDCI) code in the COLUMBUS Program System [11, 12] is a “direct-Cl

TABLE IX
Eigenvalues of the Perturbed-Tensor-Product Matrices

m=8; N =65536 m=10; N=1,048576

£=0 =10 =0 £=100

A1 13517.53848 13518.20621 194306.6355 194313.3266
Ay 17479.77431 17479.04546  248296.3451  248289.0640
Az 17591.64848 17592.44787 249739.2683 249747.2806
Ay 17710.02377 17710.67916 251261.4363 251268.0025
As  17835.48382 17836.15370 252869.5615 252876.2711
As  17968.68428 17969.35303 254571.1364 254577.8342
A7z 18110.36428 18111.03326 256374.5505 256381.2504
Ag  18261.36016 18262.02920 258289.2285 258295.9287
Ay 18422.62196 18423.29105 260325.7948 260332.4955
Ao 21228.42326  21228.60963 262496.2714  262502.9724
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method, which means that the Hamiltonian matrix is treated in operator form—the requi
matrix—vector products are computed “directly” from the underlying repulsion integre
and coupling coefficients. The repulsion integrals are partitioned based on the numbe
“internal” and “external” orbital indices, and the coupling coefficients are partitioned ai
computed correspondingly. The most important contributions to the eigenvalue are fr
the repulsion integrals indexed by four “internal” orbital indicgsys; these include both
the reference configuration state function (CSFs) and those related to the reference (
by rearrangements of the electrons within the internal orbitals. In the graphical unit
group approach used in the COLUMBUS Program System, these CSFs are called the
walks.” The next most important contributions to the eigenvalue are those that invo
the interactions of the z-walks with the other expansion CSFs. These involve only
small subset of the integrals with three intermgg, and two internal ganpg and Gapbe
orbital indices. These interactions are sufficient to determine the first-order wave funct
and the second-order energy contributions in the perturbation expansion. An approxin
Hamiltonian matrix may be defined that consists only of the diagonal elements and
the rows and columns corresponding to the z-walks. This is called,adfproximate
Hamiltonian matrix. Matrix—vector products with thg Bnd exact Hamiltonian matrices
correspond to typical effort ratios of = 10! to = 1073,

This suggests the use of thg Blamiltonian as theéd® matrix, andH© as the exact
matrix in the SPAM procedure [13]. The convergence summaries for two test calculati
are given in Table X. The first calculation is for a single-reference wave function féBihe
ground state of the CHmnolecule. This small calculation consists of 2,036 expansion CSI
with two z-walks, and this results in a measured effort ratig ef 1.03- 10~. The second
calculation is for a multireference wave function for the ground state of tha@tical. This
is a larger test case, but is still modest, with 70,254 expansion CSFs and 188 z-walks,
this results in a measured effort ratioof= 6.04- 10-2. In both cases, the initial vector is the
column of a unit matrix corresponding to the lowest diagonal element. As seen in Table
the SPAM procedure only improves the overall efficiency by a modest factor of 10%—-30
depending on the convergence tolerance. This is becausetHarBiltonian is a rather
poor approximation to the exact Hamiltonian matrix, and leads to a fige — HO |
(which was empirically estimated in these calculations for the dynamic tolerance). T

TABLE X
Convergence Summary for MRSDCI Calculations

CH,(°B1) CHs(°A3)
Convergence  Calculation
tolerance type Nmax Nproduct Nmax Nproduct
Ir] <1073 DPR 6 [6] 6 [6]
SPAM 5 [4,7] 6 [5,9]
Ir] <10°° DPR 9 [9] 10 [10]
SPAM 8 [7,12] 9 [9, 14]
Ir| <1077 DPR 12 12 15 [15]
SPAM 10 [10, 16] 13 [13, 18]

Note The SPAM calculations use the, BHamiltonian for H®,
N =2,036 and N,=2 for the CH calculations; N =70,254 and
N, =188 for the CH calculations. The initial vector in all cases is the
column of the unit matrix corresponding to the lowest diagonal element.
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is also evident from the convergence trajectories in which a sid¢fieiteration often is
followed immediately by a subsequent? iteration. Future effort will be directed toward
finding more accurate approximaté? Hamiltonian matrices.

Rational-Function Direct-SCF Examples:Self-Consistent Field (SCF) wave function
optimization involves the optimization of a trial electronic structure wave function wit
respect to the essential subset of orbital rotations [14]. One approach to this nonlinear
timization problem involves a sequence of rational function approximations. Optimizati
of an intermediate rational function approximation results in the eigenvalue equation

<Bw_T ' iNx) (lD - (8)' (4.19)

In this equation, the matriB is the orbital-rotation Hessian matrix (the matrix of seconc
derivatives) evaluated with the current reference wave function, the wedésathe orbital-
rotation gradient, ané is the vector that defines the optimal orbital rotations within the
local rational-function approximation. The vectoiis used to update the wave function
and to define a new reference wave function expansion point for the next rational funct
approximation; this sequence of wave function updates constitutes an “outer” iterati
For each “outer” iteration, a single eigenpair of Eq. (4.19) is required, and it is the o
that corresponds to the lowest eigenvalue. The iterative solution of this eigenvector is
“inner” iteration. Further details of this kind of wave function optimization may be foun
in [14, 15]. For the present discussion, the form of the maarig of interest:

1
Baa(jo) = 2FLp 08 — 2FM8ap + 8<29%? - *ggj\g?] - gg\gl?]) - (420

During the eigenpair solution, the Fock matrix elemefisandF;; are available, but the
remaining repulsion integral contributions to the matriggg — 1/20ajpi — 1/20avi) are
relatively expensive to include. For large molecular problems in which the “direct-SCI
approach is used, these contributions must be recomputed on-the-fly as the matrix—ve
products are needed during the iterative solution to the eigenvalue equation [16]. T
suggests the SPAM procedure using the approximation

1
0 1 MO MO] [MO]
B((ia))(jb) - B((le:)(]b) + 8<29f[:1|bj I - 7g.£1]b| I — 7gablj ]> (4-21)

B((I:g)(Jb) =2F [y — 2Fi[iMO]‘Sabz 2(1dd ®F —Fig”' @ 1””><ia)<ib> - 422
The tensor-product form of thB® matrix is shown explicitly in Eq. (4.22). The relative
effort between &8© and the simpleB™ matrix—vector product ranges from= 102
to u =10"* or better [15, 17]. This approximation to the Hessian matrix has also be
used successfully by Wong and Harrison [18] in a preconditioned-conjugate-gradient o
mization. Table XI summarizes the DPR and SPAM convergence using this tensor-proc
approximation to the Hessian matrix for the(E©)s; molecule. This calculation requires
three or four “outer” iterations (each of which requires a new eigenvector solution)
converge, depending on the overall convergence tolerance. The number of matrix—ve
products required to achieve convergence is given for each of the “outer” iterations, al
with the overall totals. The efficiency improvements are modest for this calculation, rangi
from 10% to 30% reductions in the total effort.
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TABLE Xl
Convergence Summary for Rational-Function SCF
Optimizations for Fe(CO)s

Nproduet “Outer” iterations

Convergence  Calculation Nprguct

tolerance type total 1 2 3 4
Ir] <1073 DPR [8] [3] [4] [1]
SPAM [7,13] [2,3] [4,9] [1,1]
Ir| <10°° DPR [13] [3] [6] [3] [1]
SPAM [10,20] [2,3] [4,9] [3,7] [1,1]
Ir] <1077 DPR [16] [3] [6] [6] [1]
SPAM [13,33] [2,3] [4,9] [6,20] [1,1]

There are two other important features of this particular optimization problem that sho
be mentioned because they apply generally to other similar optimization problems. Fi
because the eigenvalue equation is embedded within an “outer” level optimization proc
the convergence criteria for the individual eigensolutions changes as the overall optimiza
process converges; in particular in the present application, during the initial outer iteratic
the eigensolution involving® alone is often sufficiently accurate, and the costs foBtfe
products increases as the repulsion integral thresholds are tightened toward converg
Secondly, the above equations are written in the molecular orbit@] pasis. However,
the actual calculations are done in the atom-centered atomic-ovs@abpsis where com-
putation of the repulsion integrag®? is easiest8™? is also a tensor-product matrix in this
basis [14-17]. This is typical of such tensor-product approximations. Because the ten
product nature of the matrix is maintained after such basis transformations, the indivic
component matrices may be treated in the most convenient or most efficient manner.

Ill-Conditioned Eigenproblem Examples: Because of the finite precision used in com-
putations, the computed eigenvaldgand eigenvectoy; of the matrixH almost satisfy
[1] the exact equation

(H+E—pj)v;j=0 [exactarithmetif (4.23)

That is, the computed eigenpair is almost the exact eigenpair of a midtsixE) that is
close to the matri¥d. Using backward-error-analysis [1], the error matisatisfies

IENI < p(N)elIH, (4.24)

wherep(N) is a modestly growing polynomial of the matrix dimensidn The terme is
the relative precision of the floating point representation and is callesh#iohine epsilon
For simplicity, the polynomial will be approximated hereafter@$) ~ 1. The bound
Eqg. (A1) may be used to estimate the absolute error of the computed eigenvalue:

;= pjl < IEI~ elH]. (4.25)
The relative error of the eigenvalue is then bounded by

1A —pil _ IEI  IHI_ MaxXagn|

g = < e <g—-—"—.
2] 2] 1Al Min|Apn|

(4.26)



500 SHEPARD ET AL.

The ratio of the largest exact eigenvalue magnitude and the smallest exact eigenvalue |
nitude on the right-hand side of Eq. (4.26) is calledriegrix condition numberEq. (A2)
gives a similar bound on the accuracy of the computed eigenvector

IEI -~ [adl

Sin(y| ~ '
ISINVDT= Gapn, 1 H) - SGapig, J.H)

(4.27)

From Egs. 4.26 and 4.27 it is seen that the accuracy with which an eigenvalue :
eigenvector may be computed using finite precision arithmetic depends on the macl
epsilon, the condition number of the matrix, on the eigenvalue being computed, and on
gap of the eigenvalue being computed. Anill-conditioned eigenproblem is one in which 1
accuracy of the desired eigenpair of a given problem is limited because of an unfortur
combination of these factors.

In order to examine the convergence behavior of the SPAM method with ill-condition
eigenproblems, a model mattikis defined in spectral form according to

H = UDU' (4.28)
Djk = A %5); forall j, k (4.29)
U=@A+Y)a-Y)1? (4.30)
Yekil = —Yerrk=—Yin=Yn1=c; forallk (4.31)

Yjk = 0; otherwise

The exact eigenvalues bfare the elements of the diagonal maixand the corresponding
eigenvectors are the columns of the orthogonal cyclic Toeplitz mdtr8pecifically, there
is an eigenvalue with the positive valig= A*~1 and with the corresponding eigenvector
vk = Ug whereg is the unit vector corresponding to thth coordinate. The scalar param-
eterA, along with the matrix dimensioN, determines the condition number of the matrix
and the eigenvalue gaps. The scalar parametgefines the skew-symmetric matrik,
which may be regarded as a generator for the orthogonal rotation rulaffike parameter
a corresponds roughly to a rotation angle, with smaller anglesrresponding to smaller
rotations which, in turn, result in smaller off-diagonal elements of the mitrWith these
scalar parameters, the condition number, the eigenvalue gaps, and the diagonal domir
of the matrix may be controlled.

For large matrix dimensio, it is not practical to compute the matrkt explicitly.
However, matrix—vector products may be computed efficiently in operator form as

Hx=(1+Y)1-Y)'D@-Y)1+Y)1x (4.32)

in which the individual factors operate on the trial vectdn right-to-left order. Because
of the special form of the skew-symmetric matix both the matrix—vector products and
the linear equation solutions for the individual factors may be computed with@qal))
arithmetic operations.

The rotation matrixJ may be approximated by truncation of the series expansion:

Un=1+2Y +2Y242Y34 ... y2ym (4.33)
=1+Y2+ - 2+YR+Y2+2Y)))) (4.34)

This allows an approximate matrix to be defined as

HY =uU,DU. (4.35)
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TABLE XIlI
Convergence Summaries for lll-Conditioned Eigenproblems

k=1:5 k=(N-4):N
A }“N/}"l [m] )LZ - )\-l Nmax Nproduct € )"N - )“N—l Nmax Nproduct S
101  2.1E4 ¢0] 1.0E-02 19 [19] 5.2E-13 2.1E+02 13 [13] 3.3E-15
[c0, 16] 23 [10, 39] 6.7E-13 14 [5,14] 3.3E-15
[co, 16, 12] 21 [10,18,68] 6.7E-13 16 [5,10,30] 3.3E-15
(1.01)! 2.1E4 po] 4.8E-05 27 [27] 1.9E-13 9.9E-03 13 [13] 4.4E-16
[c0, 16] 29 [11,54] 1.8E-14 14 [5,14]  2.2E-16
[c0, 16, 12] 43 [12,23,152] 1.9E-14 16 [5, 10, 27] 5.5E-16
1.05  15E21 ¢o] 5.0E-02 — — 26E+4 7.0E+19 12 [12] 2.7E-14
[c0, 16] — — 2.6E+4 12 [5,12]  2.6E-14
[co, 16, 12] — — 2.6E+4 13 [5,10,21] 2.7E-14
(1.05)t 1.5E21 po] 3.4E-23 — — 15E+5 4.8E-02 12 [12] 1.0E-15
[o0, 16] — — 1.5E45 12 [5,12]  6.7E-16
[co, 16, 12] — — 1.5E+5 13 [5,10,12] 6.7E-16

Note. For all matricesN =100Q « =0.1, and the final convergence criteria are set to guarantee ths
Sin(yy) < 10°8. The matrix—vector product counts are for all five computed eigenpairs. The relative &rrors
are the maximum for the five computed eigenvalues.

Because the truncatéf, matrix is not orthogonal, both the eigenvalues and the eigenvectc
of HUI differ from those ofH. The accuracy of the approximate matkX!! depends on
the expansion lengtim, longer expansions being more accurate generally than shor
expansions. Matrix—vector productd (x) are computed recursively using the factored
representation of Eq. (4.34), the effort for which scales modest@@s\).

Table XII shows the convergence summaries for four different sets of calculations.
all casesN =100Q « =0.1, and the final convergence criteria are set to guarantee tt
Sin(y) < 108 according to the bound Eq. (A15). Because the exact eigenvalue gaps
known for this model problem, they were used to set the convergence criteria. Up to 1
levels of approximation are used in these calculatieh:is constructed from &1 trun-
cation, andH!@ is constructed from &1, truncation. Other lower-order expansions were
also examined, but these approximations resulted either in impractically slow SPAM ¢
vergence, or they were not sufficiently accurate to improve convergence over the refere
Davidson method. The exact matiikis denoted asn= oo in Table XII. In all cases, the
expansion vectors are constructed using diagonal preconditioned residuals. The initial
tors in all cases are the appropriate columns of the unit matrix. The four sets of calculati
differ by the choice ofA.

The first set of calculations correspondsAc=1.01. The condition number for this
matrix is 21-10%, which corresponds to a fairly well-conditioned matrix. Convergenc
summaries for the lowest five eigenpairs are given in the first columns, and the converge
summaries for convergence of the highest five eigenpairs are given in the last columns
the lowest eigenpair calculations, the number of exact matrix—vector products require
reduced from 19, for the straight Davidson method, to 10 for the SPAM method. For 1
highest eigenvalues, the product count is reduced from 13 to only 5—only a single e»
matrix—vector product is required to achieve convergence for each of the higher eigenp.
The individual eigenvalues are more widely separated at the high end of the spectrum,
this results in the superior convergence rate. The gaps fandiy are shown in Table XII.
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Both the Davidson and the SPAM convergence are improved because of the larger g
The relative errorg in the eigenvalues are also included in Table XII. The relative errc
basically indicates the number of correct significant digits in the computed eigenvalue.
maximum relative error for the five computed eigenvalues is given in the table, but in
cases, the errors were comparable for all of the individual eigenvalues in the set. As see
Table XIlI, the relative error is somewhat larger for the small end of the spectrum than
the large end of the spectrum. The lowest computed eigenvalues are two or three signifi
digits less accurate than the highest computed eigenvalues, which in turn are corre
almost machine precision. This is a result of the condition number of the matrix as showi
Eq. (4.26). Loosely speaking, the relative error when a small eigenvalue is contaminatec
a large eigenvalue is larger than the relative error when a large eigenvalue is contamin
by a small eigenvalue. The maximum subspace dimension is also given in Table XlI,
it is seen that it changes very little for this matrix for the two levels of SPAM. The mo:
significant improvement for the SPAM method is the reduction of the number of exe
matrix—vector products that are required to achieve convergence.

The second set of calculations corresponda te (1.01)~L. It may be verified that this
matrix is the inverse of the first matrix, so the condition number is the same. However,
eigenvectors corresponding to the small eigenvalues of the first matrix correspond to thos
the large eigenvalues of the second matrix. The eigenvalues of the first matrix are the inv
of the eigenvalues of the second matrix. Consequently, the eigenvalue gaps of the se
matrix are smaller than those of the first matrix. Because of this difference in the gaps,
convergence rates are slower for the second matrix than for the corresponding eigenj
of the first matrix for the lower eigenpairs. This slower convergence is observed both
the Davidson iterations and for the SPAM iterations. Just as for the first matrix, the higl
eigenpairs are converged with a single exact matrix—vector product each using the SF
method. It is also seen that the relative errors are about the same for this second matr
for the first matrix, and in particular, the lowest computed eigenvalues are less accurate
the highest computed eigenvalues by only two or three significant digits. The maximi
subspace dimension is fairly constant for the convergence of the higher eigenpairs, b
becomes significantly larger for the two-level SPAM calculation for the lower eigenpai
due to the smaller eigenvalue gaps.

The third set of calculations correspondsAce=1.05. The condition number for this
matrix is 15- 107, a large value that corresponds to a very ill-conditioned matrix. Cor
vergence could not be achieved for the lowest eigenpairs of this matrix. The relative er
are given for the partially converged eigenvalues, and it is clear that no progress tow
convergence can be attained under any circumstances. Not only are there no signifi
digits that are correct in the eigenvalues, but, consistent with Eq. (4.26), the partially ¢
verged eigenvalues are incorrect by several orders of magnitude. Even if the procedu
started with eigenvectors that are exact to machine precision, the numerical errors invo
in computing the matrix—vector product result in large residual norms and in incorre
computed eigenvalues. This is because of the extremely large condition humber for
matrix. This demonstrates that it is not just the convergence of the iterative procedure
is problematic, it is the fundamental matrix—vector product operation itself that cannot
performed accurately. However, even with the poor condition number for this matrix, ray
convergence could be achieved for the highest eigenpairs, and furthermore, consistent
Eq. (4.26), the computed eigenvalues display small relative errors.

The fourth set of calculations correspondsAc= (1.05)~1. This results in the same
poor condition number as for the third matrix, and just as for the third matrix, converger
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could not be achieved for the lowest eigenpairs. Rapid convergence could be achieve
the highest eigenpairs, and the computed eigenvalues show very small relative errors.
interesting to note that the computed eigenvectors for the highest eigenvalues are ex
those that would have been computed (with exact arithmetic) for the lowest eigenpairs of
third matrix. Similarly, the computed eigenvectors corresponding to the highest eigenval
of the third matrix correspond exactly to those that would have been computed (with e»
arithmetic) for the lowest eigenpairs of the fourth matrix.

The need to compute eigenpairs of ill-conditioned eigenvalue equations or clusterin
eigenvalues arises in a wide variety of applications. Among these are problems in con
tational chemistry (e.g., the cumulative reaction probability formulation of Miller [19] ir
chemical kinetics), two-dimensional disordered atomic systems [20, 21], and the solutio
generalized eigenvalue problems arising in structural mechanics and other areas (e.g., ¢
wave modeling) [22, 23]. The above examples show that the SPAM method may be app
to these equations in certain situations, and that significant improvements in efficiency
be achieved compared to the usual Davidson method. First, the problem should be expre
in such a way that eigenpairs at the high end of the spectrum are computed. This may inv
the use of shift-and-invert transformations of the original problem in order to achieve t
formulation. Secondly, appropriate, and sufficiently accurate, approximate matrices n
be devised for this transformed problem in order to apply the SPAM procedure.

5. SUMMARY AND CONCLUSIONS

A new diagonalization method, SPAM, has been developed and applied to several m:
eigenproblems. This method is a modification of the Davidson subspace method. It use
approximate matrix, or a sequence of approximate matrices, along with projection opera
in order to generate the basis vectors for the subspace expansion. The goal of the me
is to reduce the number of exact matrix—vector products that are required, and, in
way, to reduce the overall effort required to achieve convergence. The method is applici
to the lowest eigenpair of the spectrum, the lowest few eigenpairs, the highest eigen|
the highest few eigenpairs, or selected interior eigenpairs determined either with vec
following or root-homing approaches. A dynamical convergence criterion is develop
that allows for efficient early termination of the intermediate iterations for single-lev
and multilevel SPAM. Contraction of the intermediate-converged eigenvectors in ordel
construct the expansion subspace for multiroot calculations is achieved with singular ve
decomposition.

The method is applied to banded matrices, perturbed-tensor-product matrices, MRS
Hamiltonian matrices, a set of ill-conditioned matrices, and the eigensystem that results f
rational-function direct-SCF wave function optimization. In these applications, approxim:
matrices are generated by deletion of small matrix elements, deletion of off-diagonal blo
of matrix elements, tensor-product approximations, operator approximation, and by tr
cation of series expansion. With sufficiently accurate approximations, the SPAM mett
improves the convergence efficiency in all of these applications, in some cases only i
estly, and in some cases dramatically. Several examples that involve “one vector at a i
convergence of multiple eigenpairs show extraordinary improvements over the refere
Davidson procedure. The expansion vectors are generated using the usual preconditi
residual vector and the 1IGD/GJD procedure, with the latter displaying superior conv
gence with suitably accurate preconditioners, and both procedures are observed to di
convergence superior to the Krylov/Lanczos approach.
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Many eigenvalue problems lend themselves naturally to formal approximation. The .
lution of the approximate problems leads to conceptual insight in addition to approxim:
numerical solutions to the original problem. In some cases, there exists a sequenc
successively simpler approximations, each requiring less effort than its predecessor.
multilevel SPAM method provides a framework within which each of these approximatio
can be used to improve the efficiency of the original eigenproblem.

A standard Fortran 90/95 subroutine has been written that implements the multir
multilevel SPAM method described in this work. This subroutine, along with documentatit
and test examples, is available from #rnymous ftgerverftp.tcg.anl.gov.

There are several directions for future extensions of this method. The first is to |
generalized symmetric eigenvalue problekh £ 1;S)v; = 0, in which the metric matris
is symmetric and positive definite. The iterative subspace solution of this equation has b
analyzed in detail by Sleijpegt al.[27, 28], and we believe that this analysis applies in ¢
straightforward way to the SPAM method. A second possible extension is to the gent
nonsymmetric eigenvalue problem. This extension is somewhat more problematic [3].
are also examining the use of the SPAM in the solution of other linear and nonlinear ma
equations.

APPENDIX A: BOUNDS AND ESTIMATES

In this appendix, an analysis of the SPAM procedure is presented. This includes v
ous bounds and error estimates of the eigenvalues and eigenvectors. Suppose a se
eigenvector” and eigenvalue.” of a symmetric matrbH = H are desired, and an
approximate matrixd @ is chosen, constructed, or made available with the correspondil
eigenpairv{” anda{". In general, the eigenvalues and corresponding eigenvectors of t
two matrices should be “close” in some sense, and in particular this should be true for

eigenpair of interest. The rigorous bounds [1]
©_,0 1 ©
2P| = e -1 (A1)

@D _H©O
sin(2 () < W0 A

A2

(with y =0 or 1) apply to all of the eigenvectors and eigenvalues of the two matrices. T
matrix norm used in this discussion is the spectral norm defined as

IA] =Max{|A;(A)] : j=1...N}, (A3)

wherej(A) is the jth eigenvalue of the matriA in which the eigenvalues are ordered
from smallest to largest. For the matrix nofid® — H©| in particular, the eigenvalues
of the matrix H® — H©) will be, generally, both positive and negative, but they shoulc
all be “small” in magnitude in a qualitative sense for these bounds to be useful. The ¢
function in Eq. (A2) is defined as

Gapla, j, A) =Min{ja — am(A)| :k=1...N; K # j}. (Ad)

In words, it is the smallest gap between the scalar argument the nearest eigenvalues
that surround thegth eigenvalue of the matriA. Equation (A2) suggests that, for an
isolated eigenvalue (i.e., a large gap), the corresponding eigenvector may be approxim
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well from the approximate matrix, but for closely spaced eigenvalues (with small ga
separating them), it is only the vector subspace spanned by the entire set of nearby ve
that is approximated well. This is discussed in more detail in [1]. Note that the gap of eitl
matrix H® or HY may be used in Eq. (A2) as appropriate. In particularly bad situatior
of clustered eigenvalues, the corresponding eigenvectors may be very sensitive to the ¢
differences in H® — H©®), whereas the eigenvalues themselves are relatively stable
these small differences. Another useful property of a matrix iSgpreadA ), defined as

SpreadA) = An(A) — 11(A), (A5)

which is the numerical range of the eigenvalues of the matrix
The angle) = /(v, w) between two arbitrary vectovsandw is defined in the usual way

(v'w)
Cos(y) (A6)

V- jw|®

It is also useful to decompose an arbitrary unit vector into orthonormal components, s
as

w=CoS{)V+ Sin(y)v,. (A7)

This decomposition is consistent with the definitionjofn Eq. (A6).

Inthe SPAM method, the selected eigenvector and eigenvalue are iterated to converge
so the bounds in Egs. (Al) and (A2) are not especially useful in determining the accur
of this eigenpair. This is because the above general bounds must hold also for the eigen
that are not being improved during the iterative process. In order to refine the bounds of
selected eigenpair, the iterative procedure itself must be examined.

During the iterative process, there is some set of expansion veetors =1...n},
assumed herein to be orthonormal, that are collected into the ¥attiand that define the
projection operatorB" = XM XMT andQI" =1 — P, These projectors, in turn, define
the SPAM:

RN = (p[n]H(O) pin 4 piNHO QM 4 QI H© p[n]) + QD QMM (A8)
—HO +Q[n] (H(l) _ H(O))Q[n]. (A9)
Note that the first form is used in the computation because the first three terms in pa
theses may be constructed entirely from the stored vexiBrsand matrix—vector products
Wi = HOXI and do not require an explicit computation of a matrix—vector product wit

the matrixH©. The second form is convenient for some of the formal analysis in th
section. The eigenpair is determined from this approximate SPAM:

(I — 1Tl o, (A10)
The normalized eigenvectu[j“] may be decomposed according to
V[J-n] — X[n]C[n] + Sin(w[n])x[n+l], (All)

in which the unit vectorx"*1 is orthogonal toX[". The normalization i7" +
Sirf(y!") = 1. This is a generalization of the decomposition of Eq. (A7). As the iterativ
SPAM procedure convergég™| — 1 and Sirgy[") — 0.
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Once an eigensolution dfl" has been computed, the accuracy of the orighidl
eigensolution may be assessed by computing the residual vector

rj=(H® — pj)vi", (A12)

with p; =V{"THOVIY being the scalar that minimizes the residual norm. A conservativ
bound on an exact eigenvalue is given by [1]

lpj = 22| < Irj1. (A13)
Another (ultimately tighter) bound is given by

Irjl?

_ Al4
Gap(py. 1. HO)’ .

o =27 <

but this requires knowledge of the exact gapié?, which is generally unknown. A useful
lower bound on the gap may be computed sometimes from Eq. (A13), and that lower bo
can be used in the RHS of Eq. (A14).

In principle, there is no lower bound on the residual norm magnipudeConsider, for
example, the special case in whidht andH © share the same eigenvectors, but have differ
ent eigenvalues. As long as the vectors are ordered correctlyrtijen0 and convergence
would be achieved in a single iteration, regardless of the magnituiid &f—H©|.

The accuracy of the vecto:[j”] is determined byy = Z(V[j”],vﬁo)), and this angle is
bounded by [1]

Iril

SpreadH©) (A15)

: Irjl
<|Sin(y)| < Ganlp;. . HO)"
The exactSpreadand Gap of H© are unknown, but useful upper and lower bounds, re
spectively, may sometimes be computed and used to bound theSiw@kj. In practical
applications, any or all of the above bounds, on the eigenvalues, Egs. (A13) and (A
or the eigenvector error, Eq. (A15), may be used to terminate the iterative diagonaliza
procedure.

Substitution of Eqg. (A9) into Eq. (A12) results in

r = (|__|[n1 — QM (H® — HO) QI — p;)v[j”]

— (X[jn] —pj — Q[n](H(l) _ H(O))Q[n])v[jn]. (A16)
Multiplying from the left byvi" " gives
()‘[jn] _ ,Oj) — V[jn]TQ[n](H(l) _ H(O))Q[n]v[jn] (A17)
= Sir? ()X (H® — HO) XY (A18)
A — o] < Sir(plM) - [H® —HO|. (A19)

The bound in Eqg. (A19) follows from Eq. (A18) and the definition of the matrix norn
Eq. (A3) This improves on the general eigenvalue bounds given directly by Eq. (A
Substituting Eq. (A17) into Eqg. (A16) gives
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rj = VT QIR (H — ) QIR _ il (H® — H®) Qi
= — (1= AT ) QI (H® — HO) QI
= —Sin(y!"M) (1 — VT QI (H® — HO)xI ] (A20)
Iyl = [Sin(w™)| -] (1 = IVITT) QI (H® — HO)xIn+|, (A21)
This results in the bounds
Irjl < |Sin(y™)] - [[H® - HO|| (A22)
(L= W) (Y — )]
Gap(pj, j, HO)
1 —HO|

sin(y)| < [sin(y!™)-

in(y iy, I T
< [Sin(y!)] Gap(p;. 1, HO) (A23)
oy =171 = I =[Sin(w™) |- T QI (R — HO)x0 )
= [sin(y!") |- [H 1] (h2%
— I Ty ol (HO _ O y[n+1]|2
o) = ey (I VPV QIT(H® — HO) x|
i Aj |§S|n2(1// ) Gap(p;j, j, HO) (A25)
@ _ HO?2
< sir(ym). IHY =Y (A26)

Gap(p;. j,HO®)"

On the first SPAM iteration, when the first vector is being computed to form the su
spaceXtl, Sin(y) =1 and Eq. (A22) shows that the residual nomyy is bounded from
above by the matrix difference norpid @ — H©@ . Similarly, the bound on the error angle
Sin(y) reduces to that given in Eq. (A2), and the eigenvalue error reduces to that givel
Egs. (A1) and (A14). Itis only as vectors are added to the subsyp@&teéhat the bounds
improve. All of the bounds in Egs. (A22)—(A26) improve upon the general bounds becat
theSin(y[") coefficient (which is a computable quantity) decreases toward zero as the |
cedure converges. Equation (A23) shows alsoSivai/ ), the exact error in the eigenvector,
andSin(y[) are of the same order, and both decrease together as convergence is achi

The accuracy from one SPAM iteration to the next is now examined. The eigenvec
vi" of HI" is decomposed according to Eq. (A11), and the vedior!! is appended to the
X" basis vectors to give the new projectors:

pln+1] _ x[n+1] (X[n+1])T — plnl 4 xIn+1] (X[n+1]>T (A27)

QI+l — qlnl _ yin+1] (X[n+l])T' (A28)

The next SPAM is then given by

HI+1 — HO +QIMU(HD — HO) QI+ (A29)

_ AU 4 (0 (A30)

=R 4 (Q[ﬂ+1](H(1) _ H(O))Q[n+1] — QM (H(l) _ H(O))Q[ﬂ]) (A31)
H
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with the obvious definition of the matriA. The scalar expansion parametemay be
introduced in therj + 1] eigenvalue equation as

HIMI = 4 gA, (A33)

and the eigenvector (with intermediate normalization) and eigenvalue may be expande
powers of this parameter as

0= (HImH — plntl)yins (A34)

(HM 4+ BA) — (A7 +pat + g2 ) (VI vt 4+ g2V ) (A35)

For notational simplicity, thei+ 1] superscript has been dropped in Eq. (A35). Inthe usue
perturbation theory approach, it is the solution of the eigenvalue equate-4atthat is

of interest, but only the low-order terms are kept to define various approximations to

desired elgenvaluxa[”“] and elgenvector (n+1] . Collecting the zeroth order terms together,

the first-order terms together, and the second order terms together gives

0= (|__|[n] _ )»[J-HH]{O})V[J-M”{O} (A36)
_ [n+1](0}y, [n-+11{1} [N+11(1}\, [n-+1]{0

0= (HI — Aot (A =l (A37)

0= (H[n] )L[jn+l]{0})v[jn+1]{2} + (A _ )\[jn+1] )V[]n+l +)L[n+1] [Jn+l]{0}. (A38)

Equation (A36) means that" ™% =3I and V"% = IV the eigenpair from the

previous SPAMHI", Making these subst|tut|ons mult|ply|ng Eq. (A37) from the left by

VI and noting thaQ™+*v" =0, gives the first-order contribution and corresponding

bound to the eigenvalue

k5n+1]{1} — V[jn]TAV[jn] =V[jn]TQ[n] (H(l) _ H(O))Q[n]v[jn] _ (,Oj _ )L[jn]) (A39)

A < Sir (yl) - [HD — HO|. (A40)
The first-order contribution to the eigenvector is
n+1(1 _ _ (g [y —1* [n+11{1}y [n]
v =—(H" —2") 7 (A =4 v, (A41)

in which the pseudoinverse (denoted-ak‘) operates only within the subspace orthogonal
to v[j”]. Substitution of the matrixA from Eq. (A31) results in

V[jn+l]{l} — S|n<1//[n]) (|__|[n] _ )\‘[jn])*l*Q[n] (H(l) _ H(O))X[nJrl] (A42)
[(H —HO)|
Gap(AlV, j, HIm)’

T < |Sin(y )| - (A43)

Multiplying Eq. (A38) from the left byv{"", and noting thaQI"**\" =0, gives the
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second-order contribution and corresponding bound to the eigenvalue
)L[jn+1]{2} — V[jn]T Av[jn+1]{1}
— _ynT @ 0 T [ —1*
= -V} Q[n](H ) _ H¢ ))Q[n](H[n] -\ )

X Q[n] (H(l) _ H(O))Q[n]v[jn]
= —Sir? (M) UT (HD — HO) QI

% (I__i[n] _ A[j”])_l*Q[“] (HO — HO)xn+aT (Ad4)
2

) < grp(gimy. L2 —HO) (A45)
J = Gap(a[", j, HIm)

Alternatively, Eq. (A9) may be used to define a perturbation theory for the eigenpair
the exact matrix. The scalar expansion paramgteray be introduced as

HO =R _ gQln (H(l) _ H(O))Q[n]. (A46)

Expanding the eigenvector and eigenvalu&l®¥ in powers ofg and collecting the zeroth
order terms

0= (HIM — 2(910)yio, (A47)

This means that(”” :AE”HHO} =" and {1 =VE“+1“0] =" Collecting the first-
order terms irg gives
AgO){l} _ )»Enﬂ]{l} = (pj - )»[jn]) (A48)

Vgom} V[jn+1]{1} =Sin(1/f[“]) (H_[n] _ k[j”])_l*Q[”] (HY - H<O))x[”+1]. (A49)

Collecting the second-order termsgrgives
O _ 4 [n+112)
AT = . (A50)

It may be verified that the second- and higher-order terms in the eigenvector correcti
and the third- and higher-order terms in the eigenvalue corrections, are different in th
two perturbation expansions. However, through first-order for the eigenvector and thro
second-order for the eigenvalue, Egs. (A47)—-(A50) demonstrate that the low-order cor
tions to the SPAMH[™1 and to the exact matrid @ are identical. That is, these equations
show that the sanﬁi_n(w[”]) factor appears in the low-order corrections to the eigenvecto
and eigenvalues dfi" andH©®. This is the basis of the improved efficiency with the
SPAM method. The effort required to solve tH&! eigensolution involves only matrix—
vector products with thel® matrix. Once found, a correction of approximately the sam
accuracy is incorporated (with the effort of only a singl® matrix—vector product) into
the desired eigenpair. The fac®in(y[") is a computable quantity, and it converges towarc
zero as the procedure converges toward the selected eigenpair.
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APPENDIX B: GENERATION OF NEW EXPANSION VECTORS

There are several ways of generating expansion vectors that have been consider:
the past with the Davidson diagonalization method. These are discussed briefly here
compared to the SPAM method. These correction vectors may be derived from perturba
theory, relaxation, minimization of the residual norm, stablization of the Rayleigh quotiel
or, in a heuristic manner, by approximation [3, 4]. The latter approach is taken here. T
facilitates comparisons, but it provides a rather narrow view of each of the methods;
reader should consult the original references for additional details. For a rhhtthxe
desired eigenvector and eigenvalue satisfy the equation

(H —0)v=0. (B1)

The exact eigenvectarmay be written as a sum of a unit trial vectoand an orthogonal
correction vecto$, asv = x + 8. Furthermore, the eigenvalue may be writtei as(p + ¢)
wherep = x" Hx is the Rayleigh quotient. For this decomposition to be us&fulx) should

be small,|§| should be small, ang should be small. For practical reasons, it will be useful
to introduce an approximate matiix This allows the eigenvalue equation to be written in
the various forms

H—-—p—8)b=—H—p—e)X (B2)
D—-—p+MH-—D—¢)6=—r+ex. (B4)

Note thatthe matrixd — A) is singular, so this expression is a statement about how the exe
vectorv is annihilated from the RHS of the Eqgs. (B2)—(B4). All of the methods discusse
in this appendix will be expressed as approximations to these exact equations.

The original Davidson [2—4] method follows from two separate approximations. The fir
is that the termsH — D — ¢) are deleted from the LHS, and tbéerm is deleted from the
RHS of Eqg. (B4). This results in the equation

(D = p)6® =—r. (B5)

The second approximation in the Davidson method isBtiatsually taken to be a diagonal
matrix. Other choices have been used also [3—6], but the diagonal approximation make:
linear equation in Eq. (B5) trivial, and it is the most common choice. The residual vec
r is proportional to the gradient of the Rayleigh quotient with respect to variations in t
trial vectorx, and consequentl§® from Eq. (B5) may be regarded as a preconditionec
gradient. This has been discussed by van Lenthe and Pulay [24] and by Dastidé$25].
The correction vecto® from Eq. (B5) is not orthogonal t®. This traditional Davidson
method is denoted the diagonal-preconditioned-residual (DPR) method and is used a:
reference for comparisons in this work.

Many methods are based on Rayleigh quotient inverse iteration (RQII). This is usue
regarded as a single-vector method in which the trial vector is replaced, during each iterat
with the solution of the linear equation

(H = p)x"W=x. (B6)

This method displays asymptotic cubic convergence [1], which means that, when the re
ence vectoxis sufficiently close, the error in the eigenvector of each iteration is proportion
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to the cube of the error of the previous iteration. Of course, this cubic convergence cannc
exploited practically for matrices of large dimension (except for special or simple forms
the matrixH) because of the need for the linear equation solution. For a subspace mett
it is not the new vector that is of interest, it is the component of the new vector that is |
thogonal to the previous vector that is of primary importance. Wriitf§= (x + 67" /&
and rearranging the expression [26] gives

(H — p)6R = —r +ex. (B7)

This shows that the subspace expansion vector generated from RQII is the approxime
to the exact equation that results from deletingahierm from the LHS of Eq. (B3). The
scalare may be determined by operating on the lefoddyH — p1)~1. This gives

1

S H DX %

This suggests that two linear equation solutions are required during each RQIl itera
when the vectosR?" is computed, one to determine which then allows the RHS of
Eq. (B7) to be evaluated, and the other linear equation solution to detefftftieSleijpen

et al.[27, 28] and van Daret al.[29] suggest two alternatives in their Generalized Jacobi
Davidson (GJD) method. Operating on the left of Eq. (B7) by the projétterxx™) gives
the equation

1 —xx")(H — p)6®P=—r. (B9)

This eliminates the parameterfrom appearing explicitly in the solution of the linear
equation for6%’°. During the solution of this linear equation, care should be taken |
ensure that the matrix operates only in the subspace that is complementa@®ntoes P
has been determined,may be computed, if desired, as=rT6%P. Sleijpenet al. also
suggest that the inverse iteration equation for the expansion vector may be solved ir

augmented form
H—p —x\ /6%P r
(L) )=

in which both unknownss and6%’°, are determined together. Equations (B9) and (B10

both show that the vecté’® may be solved with a single linear equation. Sleijpeal.[27]
proposed that iterative solutions of the linear equations should be terminated early du
the initial iterations in order to improve efficiency, and van Danal. [29] suggested the
use of block-diagonal approximationshb

Olsenet al.[26] have proposed the inverse-iteration generalized davidson (11GD) methc
The terms K —-D—¢) are deleted from the LHS of Eq. (B4), resulting in the lineat
equation

(D — p)8"®P = —r 4 ex. (B11)

This is equivalent to replacing by D in the preconditioner in the RQII equation (B7).
The scalag is determined by operating on Eq. (B11) from the leftdyD — p1)~* and
enforcing the orthogonality relatiot 6"°° = 0:

(D —ph~*x
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In principle, the correction vector and parameteould also be determined using Egs. (B9)
and (B10), but for a diagondl, there is little practical advantage. Olsetral.[26] pointed
outthatinthe limiD — H, the DPR correctiof® becomes exactly linearly dependent with
the current trial vectox (which means it makes no progress toward convergence), where
the 1IGD steps'®P becomes equivalent to Rayleigh quotient inverse iteration (compare
Eg. (B7)), which not only converges, but converges cubically.

The other popular subspace generation approximation consists of deletingeira
from the RHS of Eq. (B3) and approximating the entire«(1) matrix as a unit matrix (or
a scalar multiple thereof). This results in the Lanczos expansion vector

ot =—r. (B13)

This requires the least amount of effort of any of the methods discussed in this apper
to generate the expansion vector, but it suffers from the slowest convergence proper
Because is proportional to the gradient of the Rayleigh quotient, the Lanczos method m
be considered a gradient search method. The slow convergence is because the seq
of expansion vectors corresponds to an orthogonalized Krylov sequence, which does
selectively converge to the desired eigenpair of interest. Its main advantage is the fact
the subspace matrii)[" generated by this sequence of vectors is tridiagonal, which mea
that not only is the subspace eigenvalue equation relatively easy to solve, but also only
two most recent vectors must be saved. In contrast, all of the other preconditioned expan
vector methods discussed in this appendix result in a dense subspace matrix and requi
storage of bottX[" andW!I™. It is easily verified thaX["Tr =0, which means that" is
orthogonal not only to the reference vecxdout also to the entire expansion spa¢8.

The SPAM method may now be compared to these other expansion vector method:
general, the SPAM equation (A10) may be rewritten using the splitting of the matrix, tl
eigenvalue, and the eigenvector given above. In particulat fét= D, x = XMl AN =
(p — &), and&S"AM= Sin(y [M)x("+1 from Eq. (A11):

(R — AV = (H 4+ QMDD — HHQM — p — &) (x+ 6% =0. (B14)

Rearranging into the form of Eq. (B3) and noting ti@if!x =0, this equation may be
rewritten as

(H _ Q[n](D _ H)Q[n] —p— g)éSPAM= —I 4+ eX. (Bl5)

It is clear that in the limitD — H, the SPAM expansion vector approaches the exac
correction vector, and convergence would be achieved in a single SPAM iteration. T
is in contrast to all of the other expansion vector methods discussed in this apper
(6P, 8R! §9P 6'SP 6L) none of which converge in a single iteration in this limit. This
has some formal appeal in favor of SPAM regarding the potential accuracy, but it has i
practical value in most situations becailses usually too coarse of an approximatiorHo
for this formal difference to be significant. On the other hand, because SPAM requires
iterative solution of this eigenvalue equation, it would generally be expected to require m
effort than either IIGD or the DPR methods. It also should be mentioned that in the lin
D — H, the RQII expansion vector, the GJD expansion vector, and the [IGD expansi
vector are all the same—they are all slightly different implementations of RQII.
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In the other limit, with a diagondD approximating the matriid, the GJD and the [IGD
expansion vector are still equivalent—they are slightly different implementations of t
same approximate inverse iteration. Both of these expansion vectors are orthogona
design and by construction, to the reference vectar contrast to the DPR update vector,
which is not orthogonal and must be explicitly orthogonalized before being added to
expansion vector subspace. Multiplying Eq. (B15) from the leftDy- p1)~* allows the
SPAM expansion vector to be written as

(1+ (D - pD)™*((D — H) — Q"(D — H) QI — ¢))§5™M=§"°P. (B16)

In the first SPAM iteratiorQI% = 1 and the only difference betweei?™™ and §"°P is
the ¢ term on the LHS of Eqg. (B16). On subsequent iterations, there is als®dthél)
term that contributes. In general, the SPAM expansion vector is different from the 11C
expansion vector, the DPR expansion vector, and the Lanczos expansion vector. Acs
iterations proceed, the SPAM describes the eigenpair of interest more and more accur:
By contrast, the preconditioner used in the 1IGD method, and in the DPR method, rem
fixed in form and varies only because maf

In addition to the differences in the form of Eq. (B16), another significant difference is
the definition of the reference vectarn all of the other methods;is taken to be the current
approximate eigenvector within the subspxé8. But in the SPAM method, it is defined as
x = XM wherecis the set of coefficients of the level-0 vectors from the diagonalizatio
within the [ng, n1] subspace. In the other methods described above, the expansion ve
coefficients are “frozen” as the new expansion vector is computed, whereas in the SF
method, these coefficients are “relaxed” to their optimal value as the new expansion ve
is computed. The last significant difference is that the update vector is orthogonal to
reference vectax in the GJD and IIGD methods, whereas #%*Mupdate vector, like the
Lanczos expansion vectét, is orthogonal to the entirgl" subspace.
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